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Abstract

Unripe banana flour starch possesses a high degree of resistance to enzymatic

hydrolysis, a unique and desirable property that could be exploited in the devel-

opment of functional food products to regulate blood sugar levels and promote

digestive health. However, due to a multifactorial phenomenon in the banana

flour matrix—from the molecular to the micro level—there is no consensus

regarding the complex mechanisms behind the slow enzymatic hydrolysis of

unripe banana flour starch. This work therefore explores factors that influence

the enzymatic hydrolysis resistance of raw and modified banana flour and its

starch including the proportion and distribution of the amorphous and crys-

talline phases of the starch granules; granulemorphology; amylose–amylopectin

ratio; as well as the presence of nonstarch components such as proteins, lipids,

and phenolic compounds. Our findings revealed that the relative contributions of

these factors to banana starch hydrolytic resistance are apparently dependent on

the native or processed state of the starch as well as the cultivar type. The inter-

relatability of these factors in ensuring amylolytic resistance of unripe banana

flour starch was further highlighted as another reason for the multifactorial

phenomenon. Knowledge of these factors and their contributions to enzymatic

hydrolysis resistance individually and interconnectedlywill provide insights into

enhanced ways of extraction, processing, and utilization of unripe banana flour

and its starch.
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1 INTRODUCTION

Resistant starch (RS) can be described as the food starch
component that cannot be digested in the mouth and
small intestine of a healthy individual (Juarez-Garcia et al.,
2006). Unripe banana flour is rich in RS (Thakorlal et al.,

2010) ranging from about 17% to 80% (Bi et al., 2017;
Cahyana et al., 2019; Falodun et al., 2019) depending on the
cultivar type and its native or processed state. RS consists
of physically inaccessible starches classified as resistant
starch 1 (RS1); ungelatinized starches classified as resistant
starch 2 (RS2); retrograded starches classified as resistant
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starch 3 (RS3); modified starches classified as resistant
starch 4 (RS4); and starch nutrient complexes classified
as resistant starch 5 (RS5) (Okumus et al., 2018; Tian &
Sun, 2020). Recently, it was suggested that amylose–lipid
complexes (Qin et al., 2019; Tang et al., 2022) and starch–
polyphenol V-type complexes (Romero Hernández et al.,
2022) should be classified as RS5 due to their ability to hin-
der the attachment of starch digestive enzymes to starch
in the upper gastrointestinal tract. Unripe banana flour
native RS is mainly categorized as RS2 (Li et al., 2020) and
can be fermented by the microflora in the large intestine
(Hernández-Nava et al., 2009).
Starch granules in different plant products, such as

bananas, exist in a semicrystalline form and comprise
both the amorphous regions, consisting of amylose and
branched amylopectin, as well as the long-chain amy-
lopectin crystalline regions that twist into H-bonded dou-
ble helices (Butterworth et al., 2011). Classification of these
starches according to their amylose/amylopectin results
in normal starches with 25%–30% amylose and 70%–75%
amylopectin; waxy starches with high amylopectin con-
tent of 98%–99%; and high-amylose starches with 50%–70%
amylose content (Bello-Perez et al., 2020). This group-
ing ultimately influences the resistance of the starch to
enzymatic hydrolysis. Wang et al. (2022) noted that fac-
tors including starch concentration, source, type, and
concentration of enzymes, as well as amylose content,
influence amylolysis. The RS fraction is therefore starch
that resists alpha-amylase and pullulanase hydrolysis in
vitro beyond 120 min compared to rapidly digestible and
slowly digestible starch (Lockyer & Nugent, 2017). Thus,
digestion of RS does not take place in the upper gas-
trointestinal tract, but RS is fermented by microbes in the
colon, which produce short-chain fatty acids (SCFAs) such
as acetate, butyrate, isobutyrate, isovalerate, and propi-
onate (Koh et al., 2016; Meenu & Xu, 2019); gases such as
methane, hydrogen, and CO2; as well as alcohols including
methanol and ethanol (Birt et al., 2013). Produced SCFAs
are then utilized as a source of energy in the body and are of
great importance to colonic health (Phothisoot et al., 2023).
Butyrates formed through the fermentation of RS are the
preferred matrix by colonocytes. The SCFA butyrates have
also been implicated in increasing colonic blood circula-
tion, reducing luminal pH, and preventing the formation
of abnormal colonic cell populations (Lockyer & Nugent,
2017). Products of RS fermentation are absorbed from the
gut into the blood flow where they are transported into the
adipose and skeletal muscle tissue and undertake a unique
role in improving insulin sensitivity (Lockyer & Nugent,
2017).
Currently, RS is classified as a prebiotic due to its fer-

mentation bymicrobes in the colon and the corresponding
production of SCFAs, which benefit the host (Moore et al.,
2015). The major phyla that have been implicated in RS

fermentation include Actinobacterium, Bacteroidetes, and
Firmicutes (Birt et al., 2013). Other RS hydrolyzing strains
identified in fecal samples of humans include Bifidobac-
terium spp., implicated for lactate and acetate production;
Bacteroides spp., implicated for acetate and propionate
production; as well as Fusobacterium and Butyrivibrio,
implicated for butyrate production (Meenu & Xu, 2019).
Intake of RS in diets has also been linked to an increase in
the number and activities of microbes such as Lactobacil-
lus, Bifidobacterium, Lachnospiraceae, Ruminococcaceae,
andClostridium spp. (Zeng et al., 2017; Meenu &Xu, 2019).
RS thus functions as both a prebiotic and a symbiotic by
promoting the growth and actions of probiotic bacteria as
well as interacting with other prebiotic dietary fibers such
as beta-glucan (Raigond et al., 2015). Upon absorption,
RS undertakes some of its probiotic roles by protecting
ingested organisms on their way to the colon, thus increas-
ing the amount of these beneficial organisms in the colon
(Raigond et al., 2015).
The RS present in unripe banana flour can modulate

metabolic activity and hence provide protective effects
against illnesses such as cardiovascular diseases, cancer,
diabetes, and obesity (2019Khoozani et al., 2019; Li et al.,
2020; Sidhu & Zafar, 2018; Singh et al., 2016). RS has been
shown to reduce the incidence of noncommunicable dis-
eases, lowering GI and cholesterol, as well as exerting
positive effects against cardiovascular diseases, colorec-
tal cancer, diabetes, and obesity (Phothisoot et al., 2023).
Furthermore, RS, which is classified as a dietary fiber,
contributes to fecal bulking and hinders the growth of can-
cerous lesions of the bowel in vivo (Moore et al., 2015).
Rabbani et al. (2009) showed that a diet containing RS
from unripe banana had a positive effect on controlling
shigellosis in children after 5 days of feeding, through a
decrease in stool volume while increasing the concentra-
tions of acetate, butyrate, and propionate in the feces of
the children. In the United States, the daily recommended
intake of RS is 6 g RS/meal. However, Americans are
reported to consume an estimated daily intake of ∼5 g
RS/day (Birt et al., 2013). Despite the beneficial health
effects derived from unripe banana flour-resistant starch
(UBFRS), there exists a paucity of literature attempting to
integrate and elucidate the mechanisms by which unripe
banana flour starch resists enzymatic hydrolysis. There-
fore, this review aims to elaborate on the intricacies of the
resistance mechanisms of unripe banana flour starch to
enzymatic hydrolysis.

2 AMYLOLYSIS RESISTANCE IN
STARCH

The enzymatic hydrolysis of starch has been shown to
occur at the interface between the solid phase, which is the
starch, and the liquid phase, which is the conveyed enzyme
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acting on the starch (Wang et al., 2022). Naguleswaran et al.
(2014) opined that the occurrence of amylolysis, which is
the hydrolysis of starch granules by amylases, takes place
via diffusion to a solid surface, adsorption, and catalysis.
Furthermore, amylopectin molecules that possess greater
levels of short chains and degree of branching but have
more compact structure, high molecular density, high
molarmass, and smallermolecular size are less susceptible
to amylolytic attack (Naguleswaran et al., 2014). Enzymatic
hydrolysis of amylose and amylopectin molecules is there-
fore determined by the structure of the granules or the
arrangement of the crystallites within the granules (Dhital
et al., 2015). In determining themechanism of resistance to
amylolytic attack, Ma et al. (2020) proposed that the pres-
ence of double helix order within or outside the crystal
structure; the stabilization of the double helices into per-
fect crystalline structures; the presence of unevenly packed
or isolated single helices; the entrapment of amorphous
region within imperfect crystals; and the high molecular
order formed by the attachment of short branch length
amylopectin to the linear chain through covalent bonds are
some mechanisms responsible for the resistance of starch
to amylolytic attack.
Starch when heated in the presence of sufficient water

undergoes gelatinization and increased digestibility. Upon
cooling, high-amylose starches retrograde, forming crys-
talline regions that are inaccessible to enzymatic hydrol-
ysis (Birt et al., 2013). The A-, B-, and C-type crystalline
arrangement patterns of the different polymeric forms
affect amylase hydrolysis2018. It has been observed that the
shorter A-type double helices and interior crystallites are
more vulnerable to enzymatic hydrolysis than the longer
chains and stable helices, which are seen to be more resis-
tant (Singh et al., 2010). The surface properties of starch
granules are other contributory factors to the enzymatic
hydrolysis of starches2018. Dhital et al. (2015) stated that
cracks, pores, interior channels, and surface damage in
starch granules further exacerbate enzymatic adsorption
and binding to these molecules. Singh et al. (2010) showed
that the presence of pores and pinholes in starches facil-
itates hydrolytic attack through penetration by amylases,
thus resulting in endocorrosion, while starches (cooked or
native) with smooth surfaces and without pores displayed
very high resistance to enzymatic hydrolysis. However,
starches from other food sources such as potatoes have
been reported to be eroded through exocorrosion, which
involves erosion of the granule surface during enzymatic
hydrolysis.
Mass transfer limitations occurring due to the viscos-

ity of the starch are known to influence the hydrolysis
rate of starch (Singh et al., 2010). Available points for
enzymatic attacks are increased due to a higher degree
of branching. However, this higher degree of branching

may lead to an increase in stearic hindrance (implicated
in hindering enzymatic hydrolysis) and hence the mass
transfer resistance. The molecular weight distribution of
starches has also been reported as affecting enzymatic
hydrolysis. Starches with higher molecular weight can
experience sharp hindrances at the active centers of the
enzyme (Singh et al., 2010). The large size of the starch
granule compared to the alpha-amylase molecule pro-
vides avenues for attack by amylase by making available
many possible sites for attachment of the enzyme (But-
terworth et al., 2011). Similarly, the amylose–amylopectin
ratio has been found to affect enzymatic hydrolysis as amy-
lopectin is more easily digested than amylose in native
starches. Das et al. (2022) showed that enzymatic treat-
ment of banana flour led to increased amylose content in
the modified flour due to amylopectin digestion by amy-
lopullulanase. Amylopectin digestion has been attributed
to its larger size with a greater surface area per molecule
when compared to amylose (Singh et al., 2010). Further-
more, the glucose chains of amylose that are compactly
held together by hydrogen bonds make amylose less sus-
ceptible to enzymatic hydrolysis than amylopectin with
more branched glucose chains (Singh et al., 2010). Non-
starch ingredients including proteins and lipids reduce
the surface accessibility of the granules by blocking the
adsorption sites of the binding enzymes (Singh et al., 2010).
Amylase hydrolysis can only occur by the binding of glu-
can chains through some glucose units to their subsites
located at the active center, with the number of these sub-
sites in an active center varying from four to nine. Wang
et al. (2022) stated that different enzymes including alpha-
amylase, beta-amylase, isoamylase, glycosyl-transferase,
and glucosidase are involved in the enzymatic hydrolysis
of starch. However, the hydrolysis of alpha-(1,4) glycosidic
bonds in starch polymers is catalyzed by alpha-amylase
through endocorrosion.

3 BANANA FLOUR RS
CHARACTERISTICS AND AMYLOLYTIC
RESISTANCE

3.1 Starch molecular composition

Starch, which is made up of amylose and amylopectin,
comprises a highly branched amylopectin molecule whose
glucose bonds are joined by α-1,4 and α-1,6 linkages
(Nasrin &Anal, 2014a). The α-1,6 branching points of amy-
lopectin occur at every 24–30 glycosyl units and function
as entry points for enzymes (Giacco et al., 2016; Nasrin
& Anal, 2014a). The average number of UBFRS gluco-
syl units for amylopectin side chains was estimated to
be 14.5 (Faisant et al., 1995; Langkilde et al., 2002), but
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more recent estimates place themat 5.0–20.3 glucosyl units
(Yee et al., 2021). It has been reported that the average
degree of polymerization (DPn) of banana RS was lower
than that of jackfruit starch (Zhang et al., 2019), wheat
amylopectin (Yoshio et al., 2011), and barley amylopectin
(Tang et al., 2002). Furthermore, it was stated that UBFRS
has less branching than other starches such as jackfruit
and wheat starch (Bi et al., 2017; Das et al., 2022; Jiang
et al., 2015; Yee et al., 2021). Longer chain branches of
amylopectin produce more crystalline structures due to
the presence of hydrogen bonds among such chains (Jane
et al., 1997). However, Bi et al. (2017) and Chávez-Salazar
et al. (2017) suggested that the amylopectin architecture
can vary between cultivars. Hence, it could be imperative
to consider the genome groupings during the selection of
bananas for unripe banana flour production given their
influence on the architecture of amylopectin chains.
The amylose content of native nonmodified banana

starch ranges from 30% to 41.66% (Bi et al., 2017; Das et al.,
2022). Pelissari et al. (2012) demonstrated that banana
starch with 35.1% amylose content had higher RS con-
tent (50.3%) compared to flour with 23.1% amylose content
(45.1%RS). Unripe banana flour starch amylose is a slightly
branchedmoleculewhose glucose bonds are joinedmainly
by α-1,4 linkages (Magallanes-Cruz et al., 2017). Amylose
has very limited α-1,6 glucosyl bonds compared to amy-
lopectin (Giacco et al., 2016); therefore, the presence of
a limited number of α-1,6 glucosyl bonds could result in
amylose undergoing slower hydrolysis compared to amy-
lopectin. It has also been suggested that amylose is less
digestible compared to amylopectin because it has a lim-
ited surface area exposed to digestion due to its ability to
interact with other components such as lipids (Englyst &
Cummings, 1985; Jenkins et al., 1988). Amylose–lipid com-
plexes and amylopectin–lipid complexes (to a lesser extent)
lead to higher resistance to hydrolysis due to the forma-
tion of more resistant V-type crystalline structures (RS5)
(Wokadala et al., 2012). Hence, a higher amylose content
would lead to a higher resistance to hydrolysis.
Nevertheless, the enzyme resistance capacity of banana

starch has been attributed to the ratio of amylose and amy-
lopectin present in unripe banana flour (Bi et al., 2017;
Soares et al., 2011; Vatanasuchart et al., 2012). Conven-
tionally, starch consists of 20%–30% amylose and 70%–80%
amylopectin (Abdullah et al., 2018); however, the amy-
lopectin content of unripe banana flour is generally higher
than its amylose content (Kumar et al., 2019; Salazar
et al., 2022). The amylose–amylopectin ratio influences the
glycemic index (GI) of starchy foods (Björck et al., 1994);
hence, a high amylose–amylopectin ratio is desirable as
it improves the RS content of composite foods (Åkerberg
et al., 1998). Ademosun et al. (2021) showed that the GI
value of wheat noodles supplemented with unripe plan-

tain flour and orange peels (35.03–53.09) was significantly
lower than that of the control samples without unripe
banana flour (58.23–66.21). A higher amylose content in
unripe banana flour used in the study could have resulted
in an increased RS content, thus leading to the lowering of
the GI value.

3.2 Supramolecular structure

The structural properties of unripe banana flour and
banana RS are summarized in Table 1. X-ray diffrac-
tion assessments showed that UBFRS (RS2) has a B-
type crystalline structure (Faisant et al., 1995; Langk-
ilde et al., 2002), which possesses a characteristically
lower degree of branching, higher crystallinity, and longer
amylopectin chains compared to the A-type crystalline
structure (Chávez-Salazar et al., 2017; Kim et al., 2015;
Martens et al., 2018). The longer amylopectin chains
present in the B-crystalline structure produce a more
crystalline structure and increased crystallinity compared
to the A-type structure by enhancing the formation of
double helical structures (Chávez-Salazar et al., 2017).
Higher crystallinity results in the formation of a compact
granular structure present in UBFRS, which hinders the
starch granules (RS2) from being invaded by enzymes,
resulting in reduced susceptibility to enzymatic hydroly-
sis (Ma & Boye, 2018; Tangthanantorn et al., 2021). Unlike
the A-type crystalline structures, the B-type crystalline
starch (Figure 1) tends to have a less porous structure
because its branching sites are predominantly located
in the amorphous zones (Kim et al., 2015). In addi-
tion, the longer B-type amylopectin chains are thought
to further contribute to resistance through interactions
with lipids and amylose, further preventing hydration
and allowing for more extensive retrogradation (Zhang &
Hamaker, 2012).
However, not all UBFSs consist of B-type crystalline

structures (Table 1). Native RS2 prepared from Brazilian
and Taiwanese banana cultivars have been reported to
contain both B- and C-type crystalline structures (Cor-
doba et al., 2018; Wang et al., 2017). Cordoba et al.
(2018) showed that Terra Pla´tan (AAB) displayed a B-
type crystalline structure, while Catura cavendish (AAA)
and Prata Ana (AAB) cultivars displayed a C-type crys-
talline structure. Likewise, Musa AAA Cavendish and
MusaABB Bluggoe RS (RS2) displayed a C-type crystalline
structure, while Musa ABB Pisang Awak and Musa AA
Pisang Mas RS (RS2) displayed a B-type crystalline struc-
ture (Wang et al., 2017). The relative resistance in C-type
nonmodified UBFS compared to A-type crystallinity
starches results from the fact that the C-type crystalline
structures are structurally intermediate between the A-
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TABLE 1 Degree of polymerization, crystallinity, and granular morphology of banana flour resistant starch.

Type Description

Degree of

crystallinity

Type of

crystallinity Size Shape

Degree of

polymerization Reference

RS2 Native (uncooked) B-type 14.5 glucosyl
units

Langkilde et al.,
2002

RS2 Native (uncooked) Intact, irregularly
shaped granules
with a smooth
surface.

Thakorlal et al.,
2010

RS2 Native (uncooked and
centrifuged)

21.76–27.75 B- and C-type 29.07–
39.17 µm

Ellipsoidal and
flattened shape

Cordoba et al.,
2018

RS3 Enzymatically
modified

CA-type Tough and rigid. Das et al., 2022

RS3 Autoclaved and
debranched

C-type Cavities and
channels in starch
granules

González-Soto
et al., 2007

RS3 Modified (autoclaved,
debranched, and
enzymatically
modified)

Irregular shaped Khawas & Deka,
2017

RS2 Native (cen-
trifuged/uncooked)

B- and C-type 5–90 µm Elliptic, triangular
shaped with
smooth surfaces

Wang et al., 2017

RS2 Raw (uncooked) 18.9–20.3
glucosyl units

Yee et al., 2021

Banana flour resistant starch escapes 

gastrointestinal digestion.

Inherent Mechanisms 

Limited time for hydrolysis and 

presence of residual cell wall 

entrap starch granules (Faisant 

et al., 1995; Zhang et al., 2005). 

Retrogradation

Autoclaving creates a stronger bond 

between amylose and amylopectin 

(Ratnasari et al., 2018).

Degree of Polymerization 

Long amylopectin chains that enable greater 

retrogradation (Zhang & Hamaker, 2012).

Granular structure

Compact structure with irregular shaped and smooth surfaced 

granules (Tangthanantorn et al., 2021).

Hydrocolloids 

Forms viscous solutions and restrict activity of gastrointestinal 

enzymes (Choo & Aziz, 2010; Zheng et al., 2016). Forms a 

compact structure (Choo & Aziz, 2010). 

Crystallinity

Banana flour has a B-type crystalline structure, with 

B1+B3 chains enhancing formation of double helices 

(Langkilde et al., 2002; Chávez-Salazar et al., 2017; 

Jaiturong et al., 2020).

F IGURE 1 Mechanisms of resistance of unripe banana flour starch to enzymatic hydrolysis.

and B-type and thus would have relatively higher resis-
tance compared to type A (Ma & Boye, 2018). Modified
(autoclaved, debranched, and enzymatically modified)
UBFRS (RS3) displays C- and CA-type crystalline structure
(Das et al., 2022; González-Soto et al., 2007). The CA-type

could therefore be more susceptible to enzymatic hydroly-
sis compared to the C-type crystalline structure due to the
presence of short amylopectin chains, evidence of porous
surfaces, and surface area effects, which result in high
enzymatic hydrolysis.
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4 GRANULARMORPHOLOGY AND
ENZYMATIC HYDROLYSIS RESISTANCE

4.1 Granule shape

There are diverse reports on the granular shape and sur-
face structure of unripe banana flour starch (Table 1). The
rawUBFRS-RS2 possesses intact, irregular, and ellipsoidal-
shaped starch granules with smooth surfaces (Figure 1),
whose structures are dependent on the banana cultivar
(Cordoba et al., 2018; Thakorlal et al., 2010; Wang et al.,
2017). Pelissari et al. (2012) demonstrated that RS2 present
in unripe banana flour and starch granules displayed irreg-
ularly shaped and compact granules in both elongated
and spheroid forms. Hoffmann Sardá et al. (2016) showed
that raw unripe banana flour from Brazilian banana culti-
vars had spherical and elongated granules. Several reports
provide evidence of the influence of cultivar type on the
granular morphology of unripe banana flour starch. For
example, Gao et al. (2016) reported that Cavendish had
an irregular-shaped structure, while plantain had small
and ellipsoidal granules. Anyasi et al. (2017) reported
that Luvhele and Mabonde banana flour had polygonal-
and oval-shaped granules, whileMuomva-red andWilliam

banana flour had elongated, polygonal, and spherical-
shaped granules. Soares et al. (2011) found that desert
banana cultivars (Pacovan andMysore) had small and leaf-
like structures, while plantains (Terra and Figo) had round
and elongated structures.
Irregular- and ellipsoidal-shaped starch granules tend

to be more susceptible to enzymatic hydrolysis compared
to other starch granules because they have a larger sur-
face area and volume (Gao et al., 2016). Likewise, leaf-like
starch granules found in unripe bananas tend to have
higher susceptibility to enzymatic hydrolysis relative to
rounded granules due to the arrangement of amylopectin
molecules (Soares et al., 2011). The presence of smooth sur-
faces with no signs of degradation has been reported on
the surface of Terra, Figo, and Pacovan banana cultivars
(Soares et al., 2011). The presence of smooth surfaces is
thought to restrict the invasion of starch granules by α-
amylase. However, this explanation may not be generally
applicable given that pits have been reported on the surface
of the granules of Mysore banana cultivars, yet they have
similar resistance to digestion as cultivars with smooth
surfaces (Soares et al., 2011).
The morphology of starch granules and their suscepti-

bility to enzymatic hydrolysis can further be influenced
by food processing techniques such as heating, milling,
and baking (Anyasi et al., 2017). Autoclaved and enzymat-
ically (amylopullulanase) modified UBFRS (RS3) samples
displayed irregularly shaped granules with porous, tough,
and rigid surfaces (Das et al., 2022; González-Soto et al.,

2007). Similar granular morphologies were reported for
autoclaved, debranched, and enzymatically treated banana
RS (Khawas & Deka, 2017). The presence of pores on the
surface of processed starch granules provides a pathway
for endocorrosion. Hence, autoclaved and enzymatically
(amylopullulanase) modified banana RS (RS3) samples
have increased susceptibility to enzymatic hydrolysis com-
pared to native banana RS (RS2) due to differences in
granule structure.

4.2 Granule size

The diameter of unripe banana flour starch granules influ-
ences its susceptibility to enzymatic hydrolysis. Unripe
banana flour starch granules have been reported to possess
varied diameters ranging from 1.4 to 500 µm (Bezerra et al.,
2013; Falade & Olugbuyi, 2010; Gao et al., 2016; Giraldo-
Gómez et al., 2019; Khoozani et al., 2020; Padhi &Dwivedi,
2022; Salazar et al., 2022; Thakaeng et al., 2021). It has
been suggested that small-sized starch granules are more
susceptible to enzymatic hydrolysis compared to large-
sized starch granules due to their large surface area to
volume ratio (Gao et al., 2016; Jiang et al., 2015), while large
rounded and elongated granules may show few signs of
degradation (Soares et al., 2011).
Foam-mat, hot-air, oven, and sun drying tend to dis-

rupt themolecular order of starch granules in banana flour
due to high heat levels and longer drying times, result-
ing in relatively small-sized granules (Falade & Olugbuyi,
2010; Khoozani et al., 2020). Furthermore, it was also
reported that the granule diameter (20–47.3 µm [Espinosa-
Solis et al., 2009; Pelissari et al., 2012]; 5–90 µm[Wang et al.,
2017]) of native (raw) unripe banana RS (RS2) was greater
than that of enzymatically modified UBFRS (RS3) (20 µm)
(Das et al., 2022).

5 NONSTARCH COMPONENTS AND
THE SUSCEPTIBILITY OF UNRIPE
BANANA STARCH TO ENZYMATIC
HYDROLYSIS

5.1 Native hydrocolloids (proteins and
nonstarch polysaccharides)

Hydrocolloids are long-chain protein or polysaccharide
polymerswith the ability to bindwater and formgels or vis-
cous dispersions (Woomer &Adedeji, 2021). Hydrocolloids
interact with starch granules by forming physical barri-
ers and viscous solutions around the surface of granules,
resulting in the reduction of the activity of gastrointesti-
nal enzymes (Faisant et al., 1995; Tester et al., 2006; Zheng
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HYDROLYTIC RESISTANCE OF UNRIPE BANANA FLOUR 5191

et al., 2016). Interactions of starch granules and non-
starch polysaccharides have been shown to affect the rate
and extent of digestion of starch by prolonging the time
required for effective hydrolysis (Zhang & Hamaker, 2012;
Zhang et al., 2005).
The protein content of unripe banana flour is generally

reported to be low (<5%) (Kumar et al., 2019; Rachman
et al., 2021; Thakaeng et al., 2021), with higher concen-
trations (>5%) reported in the peels (de Angelis-Pereira
et al., 2016; do Prado Ferreira & Teixeira Tarley, 2020), as
well as with increasing ripeness of the fruit (Campuzano
et al., 2018). Miao et al. (2015) showed that the presence of
proteins in unripe banana flour starch contributes to amy-
lolytic resistance, as proteins interact with starch to reduce
the rate of α-amylase hydrolysis. The interaction is thought
to result in the formation of a three-way complex between
fatty acids, amylose, and proteins (Shah et al., 2011; Zhang
et al., 2010). This interaction occurs even with low pro-
tein concentrations (3.68%–8.02%), which could be up to
10 times less than starch (70.0%–84.4%) (Campuzano et al.,
2018; Zhang et al., 2003), thus enabling, to a certain degree,
resistance to enzymatic hydrolysis in unripe banana flour.
Fiber increases the viscosity of foods and limits enzy-

matic digestion by reducing access of gastrointestinal
enzymes to the substrates and thereby reducing the con-
version rate of starch into glucose (Abutair et al., 2016). The
pectin content of unripe banana flour has been reported
to range between 3.29% and 5.61% (Bi et al., 2017). Pectin
is regarded as a hydrocolloid alongside gelatin, alginate,
carrageenan, gellan, and agar (Goff & Guo, 2019; Milani
& Maleki, 2012; 2010), as well as a soluble fiber (Martínez
et al., 2015). Insoluble dietary fiber components includ-
ing lignin, cellulose, and hemicellulose have been reported
to be present in unripe banana flour (Silva et al., 2020;
2014). Ng et al. (2020) suggested that the barrier formed
by soluble fiber protects starch granules against water
penetration, which limits the swelling and gelatinization
capacity of starch and reduces the ability of enzymes to
access the starch due to limited entry or attachment points.

5.2 Lipids

The rate and extent of digestion of starch are also influ-
enced by its lipids composition and extent of phosphory-
lation (Qi & Tester, 2016; Qi et al., 2018). The presence of
lipids in unripe banana flour has been reported by sev-
eral authors and is said to be ≤2.0% (w/w) (Dan, 2011;
Haslinda et al., 2009; Hoffmann Sardá et al., 2016; Kongolo
et al., 2017; Menezes et al., 2011). Banana peel possesses
higher lipid content when compared to the pulp; hence,
the lipid content of unripe banana flour with peels is
higher than without peels (Haslinda et al., 2009; Hoff-

mann Sardá et al., 2016). Interaction of amylose and lipids
through amylose–lipid complex formation reduces suscep-
tibility to hydrolysis by α-amylase (Wokadala et al., 2012).
Lipids may also reduce α-amylase hydrolysis complexing
with longer amylopectin chains (Tester et al., 2006). It
has been suggested that the interaction of lipid and amy-
lose induces a change in the torsion angles of glycosidic
bonds and forms a helical structure, which reduces the
binding activity of amylolytic enzymes and the formation
of enzyme–substrate complexes (Chi et al., 2022; Li et al.,
2021). However, the degree to which lipid complexation
contributes to the hydrolysis resistance of banana flour
starch is not clear and requires further investigation.

5.3 Polyphenols

Numerous studies have reported the presence of polyphe-
nols in unripe banana flour (Anyasi et al., 2018; Pico,
Corbin, et al., 2019; Pico, Xu, et al., 2019). The polyphenols
reported to be present in bananas include anthocyanins
(cyanidin, delphinidin, and their derivatives in both fruit
pulp and peel), chlorogenic acid, ferulic acid, flavan-3-
ols (catechins, epicatechins, and gallic acid), flavonoids
(myricetin and quercetin), and tannins (Anyasi et al., 2018;
Bennett et al., 2010; 2006 Maseko et al., 2024; 2015Pico,
Corbin, et al., 2019; Pico, Xu, et al., 2019). Phenolic com-
pounds have been reported to be present in both banana
peel and pulps (Castelo-Branco et al., 2017), although
banana peels contain more polyphenols compared to the
pulp (Agama-Acevedo et al., 2016; Castelo-Branco et al.,
2017; Maseko et al., 2024).
Polyphenols facilitate the escape of starch from diges-

tion in the small intestine by inhibiting the activity
of α-amylase and glucosidase, resulting in intact starch
being transported into the colon (Gu et al., 2020; Liu
et al., 2017). Furthermore, polyphenols can interact with
starch molecules via covalent or noncovalent bonds to
form starch–polyphenol complexes (Chi et al., 2022). The
presence of starch–polyphenol complexes has been sug-
gested to occur in unripe banana flour (Choo & Aziz,
2010; Pico, Xu, et al., 2019; Sarawong et al., 2014); hence,
unripe banana flour is considered a natural source of
starch–polyphenol complexes (Hernández et al., 2022).
Polyphenols contain hydroxyl groups that enable them to
interact with starch via noncovalent bonds such as hydro-
gen bonds and electrostatic and ionic interactions (Chi
et al., 2017; Giuberti et al., 2020; Ngo et al., 2022).
Polyphenols can reduce the activity of enzymes

and starch digestibility by binding to starch-digesting
enzymes and forming V-type inclusion complexes
through hydrophobic interaction and hydrogen bonding
with amylose and amylopectin side chains (Han et al.,
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5192 HYDROLYTIC RESISTANCE OF UNRIPE BANANA FLOUR

2020; Hernández et al., 2022; Kan et al., 2022; Ngo et al.,
2022). The extent to which the polyphenol inhibition
mechanism contributes to the overall resistance to
enzymatic hydrolysis is, however, difficult to ascertain
(Hernández et al., 2022). Providing more information
on the mechanisms responsible for starch–polyphenol
complexes will enhance the exploitation of polyphe-
nols in increasing the resistance of unripe banana flour
starch. Furthermore, optimizing processing conditions
to maintain the structure of the starch–polyphenol com-
plexes present in unripe banana flour and increasing the
production and application of banana peel flour as a stan-
dalone functional ingredient or composited with banana
pulp flour will enhance the application of polyphenols
for increasing the resistance of unripe banana flour
starch.

6 GENOME GROUPINGS AND THE RS
CONTENT OF UNRIPE BANANA FLOUR

The effects of the genomic and subgenomic group and cul-
tivar type on the RS content of unripe banana flour are
summarized in Table 2. Kumar et al. (2019) found that the
RS content of unripe banana flour prepared from cultivars
belonging to the ABB genomic group (44.4%–46.5%) was
greater than those inAAA (32.7%) andAABgenomic group
(31.3%–35.6%). Vatanasuchart et al. (2012) showed that the
RS content of unripe banana flour from the BBB (68.1%)
genomic group was greater than the AA (52.2%–57.2%),
AAA (57.0%), and ABB (56.6%–61.8%) genomic groups. It
has been suggested that the B genomic group tends to have
more RS content compared to the A genomic group due to
its high starch and protein content, larger granule size, and
higher amylose content (Annor et al., 2016; Gibert et al.,
2014; Narayana et al., 2017)
However, recent studies have suggested that the

genomic group has no significant effect on the RS content
of unripe banana flour. Chang et al. (2022) found that
there was no significant difference in the RS content of
the total starch composition of unripe banana flour from
cultivars belonging to the AA (90.38% dry basis of total
starch), AAA (89.20%–90.86% dry basis of total starch),
and ABB (90.58% dry basis of total starch) genomic groups.
This conforms with the findings of Reis et al. (2019), who
suggested that the genomic group had no effect on the
RS content of unripe banana flour. Kongolo et al. (2017)
found that for cultivars grown under the same agronomic
conditions, the RS content varied. The RS content of the
AA genomic group (39.6%–47.3%) was similar to that
of the AAA (38.6%–47.1%) and AAB (39.2%) genomic
groups but slightly higher than the AAAB genomic group
(19.9%–47.4%). Cordoba et al. (2018) also found that there

was an overlap in the RS content of AAB (24.79%–34.85%)
and AAA (31.92%) genomic groups. Other studies on
unripe banana flour suggested that cultivars from the
AAA genomic group with RS content of 4.83%–57.49%
(Campuzano et al., 2018; Khoozani et al., 2019; Menezes
et al., 2011; Rayo et al., 2015; Rosado et al., 2020; Tian
et al., 2020) had RS content that overlapped with that
of the ABB cultivar types, which ranged from 8.60% to
68.8% (Haslinda et al., 2009; Nasrin et al., 2015; Rodríguez-
Ambriz et al., 2008; Vatanasuchart et al., 2012). The effect
of the genomic group could therefore be attributed to
differences in agronomic conditions, maturity at harvest,
as well as postharvest processing.

7 EFFECT OFMODIFICATIONS ON
THE RS CONTENT OF UNRIPE BANANA
FLOUR

The effect of physical and chemical modifications on the
RS content of unripe banana flour is summarized in Table 3
and Figure 2.

7.1 Physical modifications

Heat–moisture treatment (HMT) generally reduces the
RS content of unripe banana flour. Heat disrupts the
molecular order of starch granules resulting in irre-
versible changes such as granule swelling, melting of
native crystalline structure, starch solubilization, and loss
of birefringence (Anyasi et al., 2017). Zhang and Hamaker
(2012) demonstrated that cooking at 100◦C for 10–20 min
reduced the RS content of banana flour. De la Rosa-Millan
et al. (2014) showed that the RS content of flour pre-
pared from bananas that had been cooked for 5 min was
61.5% compared to 66.5% in raw banana flour. Similarly,
Rodríguez-Damian et al. (2013) found that the RS content
of banana flour cooked for 5 min (58.5%) was greater than
that of banana flour samples cooked for 15–25 min (23.3%–
23.7%). Given that the RS content of unripe banana flour
tends to decrease with cooking time (De la Rosa-Millan
et al., 2014; Rodríguez-Damian et al., 2013), shorter cook-
ing times could be applied to limit the destruction of the
structural integrity of starch granules and thus minimize
the reduction in RS content of banana flour.
Annealing and HMT followed by storage have been

shown to improve the RS content of unripe banana
flour2010. The RS content of unripe banana flour sub-
jected to annealing and storage was greater than that of
cooked banana flour samples (De la Rosa-Millan et al.,
2014). Cahyana et al. (2019) demonstrated that anneal-
ing produced higher RS content in unripe banana flour
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HYDROLYTIC RESISTANCE OF UNRIPE BANANA FLOUR 5193

TABLE 2 Effect of genomic and subgenomic group classification on unripe banana flour (UBF)-resistant starch content.

Genomic

group Subgenomic group Cultivar

Resistant starch

content (%) References

AA Inarnibal Pisang Lemark 47.30 Kongolo et al.,
2017

AA Sucrier Lady Finger 39.60

AAA Cavendish Gross Michel 37.90

AAA Cavendish IBP. 5.61 47.10

AAA Sucrier Khai Thong 42.10

AAA Red Green red 38.90

AAB Pome Pome 39.20

AAAB Pome synthetic hybrid FHIA 18 19.90

AAAB Goldfinger selection Goldfinger 47.20

AAAB Goldfinger selection PKZ 47.40

AAA Cavendish Grand Naine 32.70 Kumar et al.,
2019

ABB Monthan 44.35

ABB Saba 46.50

AAB Nendran 35.55

AAB Populu 31.28

ABB Plantain Mzuzu 90.58 Chang et al.,
2022

AAA Cavendish Malindi 90.86

AA Pisane litin Mshale 90.38

AAA Cavendish Bukoba 90.69

Dwarf red banana Guihongjiao

No. 1

86.15 Bi et al., 2017

ABB Pisang Awak Jinfen No. 1 85.88

AAA Cavendish Williams B6 90.46

AAA Cavendish 57.48 (standard
UBF)

Hoffmann
Sardá et al.,
2016

AAA Cavendish 43.25 (standard
peel UBF)

AAA Kluai Hom 57.20 Vatanasuchart
et al., 2012

AA Kluai Khai 52.20

AA Kluai

Lembuenang

57

ABB Kluai Namwa 56.60

ABB Kluai Hakmak 61.80

BBB Kluai Hin 68.80

AAB Terra Pla´tano 34.85 Cordoba et al.,
2018

AAA Caturra

Cavendish

31.92

AAB Prata Ana 24.79

AAA Cavendish Nanicão 40.90–58.50 Tribess et al.,
2009

AAA Cavendish Nanica 32.20–46.72 Khoozani
et al., 2019

(Continues)
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5194 HYDROLYTIC RESISTANCE OF UNRIPE BANANA FLOUR

TABLE 2 (Continued)

Genomic

group Subgenomic group Cultivar

Resistant starch

content (%) References

AAA Cavendish Nanicão 48.99 Menezes et al.,
2011

AAA Cavendish Nanicão 53.95–57.49
(unmodified)

Rayo et al.,
2015

AAA Cavendish 33.86 Bezerra et al.,
2013

AAA Cavendish Pei-Chiao 30.30 Liao & Hung,
2015

Cavendish Nanicão 38.92–44.27 La Fuente &
Tadini, 2017

AAA Cavendish 22.80 Rosado et al.,
2020

AAA 11.12–38.28 Campuzano
et al., 2018

AAA Musa acuminata Colla 4.33 Tian et al.,
2020

AAA Nanicão 8.20 Menezes et al.,
2010

AAA Gros Michel Kluai Hom

Thong

41.74–46.35 Virulchatapan
& Luangsakul,
2020

AAA Nanicão 8.20 Menezes et al.,
2010

AAB 30.40 Rodríguez-
Ambriz et al.,
2008

AAB Harton 31 Gutiérrez, 2018

ABB Sapientum Kluai NamWa 32.26–48.88 Moongngarm
et al., 2014

Musa paradisiaca L. 17.50 Juarez-Garcia
et al., 2006

Musa paradisiaca Terra 49.50 Pelissari et al.,
2012

ABB Awak 39.50 Haslinda et al.,
2009

39.50

ABB Musa paradisiaca 67

Pei Chiao 42.23 Li et al., 2020

Fomosana 34.00

Tai-Chiao 30.03

Nam 40.25 Ramos et al.,
2009

Fhia 01 10.01

Chifre de Vaca 61.05 Reis et al., 2019

Comprida 60.79

Curare Enano 68.50

Mongolo 65.92

Pinha 53.12

(Continues)
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TABLE 2 (Continued)

Genomic

group Subgenomic group Cultivar

Resistant starch

content (%) References

Red Yade 43.44

Samura B 52.33

Terra Ana
Branca

46.26

Terra Ponta
Aparada

56.13

Terra Sem
Nome

21.15

Tipo Velhaca 55.91

Trouis Vert 60.59

Terra
Maranhão

62.10

D’Angola 46.35

Terrinha 40.14

BRS SCS
Belluna

59.14

BRS Platina 67.43

Grand Naine 51.37

Pacovan 70.06

Prata Anã 58.30

Plantain Red Essong

(French
bunch)

33.30–50.23 Udomkun
et al., 2021

Plantain Mbouroukou 3

- False Horn

bunch

35.36–53.11

Plantain hybrids PITA 14 32.72–39.67

Plantain hybrids PITA 27 30.91–49.89

Musa sapientum,
triploid hybrid banana

7.90–8.90 Chaipai et al.,
2018

Musa paradisiaca 24.60 Hernández-
Nava et al.,
2011

Kluai Namwa

plantain

8.60 Nasrin et al.,
2015

(80%–85%) compared to HMT and dual retrogradation
(45%–60%). Annealing has been shown to increase the
RS content of unripe banana flour by preserving the
compact granule surface and increasing the crystallinity
of the starch (Cahyana et al., 2019). Rodríguez-Damian
et al. (2013) showed that the RS content of banana
flour (24.0%–29.0%) subjected to HMT and storage for
25 min was greater than that of banana flour (23.3%)
cooked for 25 min. Bello-Perez et al. (2015) further demon-
strated that the RS content of banana flour spaghetti
stored for 5 days increased from 3.2% to 7.0% (w/w).
HMT minimizes starch granule damage, while storage
facilitates the retrogradation of the starch granules by

enabling the reassociation of amylose and the formation of
a more crystalline structure, which results in improved RS
yields. The increase in crystallinity can also be attributed to
the strong bond formed by amylose and amylopectin due
to the autoclaving process (González-Soto et al., 2007).

7.2 Chemical and enzymatic
modifications

Gutiérrez (2018) reported that phosphated plantain flour
recorded the highest RS content (80%) compared to
the acetylated, methylated, and oxidized plantain flour
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5196 HYDROLYTIC RESISTANCE OF UNRIPE BANANA FLOUR

TABLE 3 Effect of modification type on unripe banana flour-resistant starch content.

Modification type Modifying agent Modifying conditions

Resistant starch

content (%) References

Physical modifications

Cooking H2O 100◦C 10.50–61.50 Zhang & Hamaker,
2012

Cooking H2O 95◦C 12.10–61.50 De la Rosa-Millan
et al., 2014

Cooking and annealing H2O 64◦C for 24 h 18.70–64.10

Cooking, annealing, and
storage

H2O 64◦C for 24 h; 4◦C for 7 days
(storage: refrigeration)

23.20–64.30

Cooking H2O 95◦C for 15–25 min 23.34–58.50 Rodríguez-Damian
et al., 2013

Cooking and heat–moisture
treatment

H2O 30% distilled water; 120◦C for
24 h (heating/drying)

22.90–55.83

Cooking, heat–moisture
treatment, and storage
(refrigeration)

H2O 30% distilled water; 120◦C for
24 h (heating/drying); −20◦C
for 7 days (storage:
refrigeration)

21.70–59.40

Heat–moisture treatment H2O 30% distilled water, 100◦C for
8 h (heating/drying), and
4–5◦C for 24 h (refrigeration)

45–50 Cahyana et al.,
2019

Annealing 70% distilled water (w/w) and
water bath at 55◦C for 12 h

80–85

Dual retrogradation Water suspension (1:5.5 [w/v]);
100◦C for 30 min (heating);
and 4◦C for 48 h
(refrigeration)

50–60

Autoclaving 121◦C for 30 min 25.25–30.30 Liao & Hung, 2015

Blanching 100◦C for 1 min 38.40–52.21

Blanching H2O 100◦C for 1 min 37.33–55.11

Blanching H2O 100◦C for 1 min 34.32–52.35

Blanching H2O 32.53–52.67

Cooked 12.40

Heat treated (uncooked) 81.19 g

Cooked 10.90

Cooked 93.68

Chemical modifications

Native 31 Gutiérrez, 2018

Acetylation Acetic anhydride
(CH3CO)2O)

7.5 mL = 0.079 mol 39.10

Carboxymethylation Monochloroacetic
acid (ClCH2CO2H)

4.7 mL = 0.079mol 39

Methylation Dimethyl sulfate
(CH3)2SO4)

7.5 mL = 0.079 mol 78

Oxidation Hydrogen peroxide
(H2O2)

6.2 mol—30% (0.079 mol) 23

Phosphation Sodium
trimetaphosphate
(STMP—Na3P3O9)

82.10

Native 40.69 Almanza-Benitez
et al., 2015

(Continues)
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TABLE 3 (Continued)

Modification type Modifying agent Modifying conditions

Resistant starch

content (%) References

Chemical Hydrochloric acid 44.87

Native Thermoplastic
plantain flour films

1.99 Gutiérrez &
Álvarez, 2016

Crosslinking Aloe vera gel 2.12–3.05

Native (Red Essong French
bunch)

33.30–50.23 Udomkun et al.,
2021

Chemical Citric acid 10 g/L citric acid for 10 min 37.65–54.32

Native (Mbouroukou 3 -
False Horn bunch)

35.36–53.11

Chemical Citric acid 10 g/L citric acid for 10 min 39.44–56.37

Native (PITA 14) 32.72–39.67

Chemical Citric acid 0 g/L citric acid for 10 min 36.28–53.63

Native (PITA 27) 30.91–49.89

Chemical Citric acid 0 g/L citric acid for 10 min 34.40–53.97

Native (uncooked) 85.67 g Sánchez-Rivera
et al., 2017

Chemical (uncooked) Citric acid 93.87 g

Resistance of Unripe banana flour starch to enzymatic hydrolysis

Physical Modifications Chemical Modifications

Cooking 

Damage to the 

structural integrity of 

starch granules

(De la Rosa-Millan 

et al., 2014; Zhang 

& Hamaker, 2012)

Annealing 

Preserves the 

compact structure 

and crystallinity of 

starch granules

(Cahyana et al., 

2019).

Heat Moisture

Treatment  

Minimizes damage to 

starch granules 

(Rodríguez-Damian, et 

al., 2013).

Retrogradation

Enables reassociation of amylose 

and increases compact structure 

and crystallinity of starch 

granules.

Enhanced resistance to 

enzymatic hydrolysis by unripe 

banana flour starch granules 

Sodium 

Trimetaphosphate

Reinforces the internal 

structure of starch 

through cross-reaction 

with the starch granules 

(Gutiérrez, 2018).

Citric Acid  

Forms strong covalent 

citric bonds to consolidate 

the molecular structure of 

unripe banana flour starch 

granules (Sánchez-Rivera

et al., 2017).

Modification reagent reacts with the starch granules to 

consolidate the internal structure and crystallinity

Limits the number of sites that are 

available and susceptible to enzymatic

hydrolysis. 

Hydrochloric acid

Induces changes and 

increases crystallinity of 

starch granules

(Almanza-Benitez et 

al., 2015).

F IGURE 2 Effects of physical and chemical modifications and their associated mechanisms on the resistance of banana flour starch
granules to enzymatic hydrolysis.

(23%–78%). The highest RS value of phosphated flour was
attributed to the crosslinking reaction of granules with
sodium trimetaphosphate (STMP), which was thought to
reinforce the internal structure of the starch (Gutiérrez,
2018). Furthermore, Sánchez-Rivera et al. (2017) demon-
strated that the RS content of raw and cooked plantain

flour treated with citric acid was greater than native
and heat-treated raw and cooked plantain flour. Similarly,
Udomkun et al. (2021) found that the RS content of cit-
ric acid-treated plantain flours was higher than blanched
and native plantain flours. The highest RS content of cit-
ric acid-treated plantain flours was attributed to its citric
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acid crosslinking effect, which facilitated the formation of
strong covalent citric bonds to consolidate the molecular
structures of unripe banana flour and limit the number
of sites susceptible to enzymatic attacks (Sánchez-Rivera
et al., 2017). Moreover, unripe plantain films substituted
with Aloe vera gel possessed higher RS content compared
to native plantain films, thus suggesting that plantain flour
films are susceptible to crosslinking with the citric acid
present within Aloe vera gel (Gutiérrez & Álvarez, 2016).
It has been suggested that unripe plantain flour modified
with citric acid and phosphate can be used as an ingre-
dient to develop functional gluten-free products due to
the high RS content (Gutiérrez, 2018; Udomkun et al.,
2021). The RS of plantain flour (44.9%) modified with
hydrochloric acid was found to be greater than nonmodi-
fied plantain flour (40.69%) (Almanza-Benitez et al., 2015).
The increase in the RS level of unripe plantain flour treated
with hydrochloric acid was attributed to the hydrolysis of
the amorphous zones of starch and an increase in the crys-
tallinity and change in the structure of the starch granules
(Almanza-Benitez et al., 2015).
The susceptibility of unmodified unripe banana flour

starch to enzymatic hydrolysis is related to changes in
thermal properties induced by processing2010. Several
studies have shown that the gelatinization temperature
of debranched and enzymatically modified banana flour
RS (103–106◦C) was greater than the unmodified one
(69.1–72.5◦C) (Cordoba et al., 2018; Das et al., 2022; Yee
et al., 2021). Similarly, the enthalpy of gelatinization (4.4–
188.2 J/g) and gelatinization temperature (68.5–147◦C) of
the debranched, enzymatically modified, and lintnerized
banana RS were greater compared to the unmodified
UBFRS (6.1–13.9 J/g and 37.6–72.5◦C) (Aparicio-Saguilán
et al., 2005, 2008; Cordoba et al., 2018; Das et al., 2022;
Lehmann et al., 2002; Nasrin & Anal, 2014b; Yee et al.,
2021). The RS content of enzymatically modified banana
flour using amylopullulanase treatment was observed to
be higher at 68.99% when compared to the unmodified
banana flour with an RS content of 38.5% (Das et al., 2022).
The enzymatic treatment was seen to lead to an increase
in amylopectin degradation, thus increasing the amylose
content and resulting in a more ordered crystalline state.
These findings suggest that chemical and enzymatic mod-
ification methods can be employed in developing unripe
banana flour and starch-functional foods with high RS
content.

8 CONCLUSION

The resistance to enzymatic hydrolysis of UBFRS can be
attributed to a multi-phenomenon mechanism that is pri-
marily dependent on the status of the banana flour: native

or processed. Factors such as the proportion of crystalline
and amorphous phases, type, and their distribution; starch
granule shape, size, and structure; amylose–amylopectin
ratios; and the presence of other native nonstarch com-
ponents such as proteins, lipids, and polyphenols have
all been implicated as other mechanisms known to influ-
ence the resistance of both native and modified UBFRS.
The DPn, degree of amylopectin branching, and amylose–
amylopectin ratio were observed to have more influence
on the enzymatic resistance of processed UBFRS com-
pared to the native one. Furthermore, unmodified UBFRS
was seen to be less susceptible to enzymatic hydrolysis
due to its B-type crystalline structure, irregularly shaped
granules, and compact granular structure.However, recent
findings demonstrated that modification of unripe banana
starch through autoclaving, debranching, and enzymatic
treatment results in greater susceptibility to enzymatic
hydrolysis due to the formation of a CA- and C-type crys-
talline structure aswell as porous structures on the granule
surface. With differences in banana genome groupings
contributing to the RS content in unripe banana flour,
further research is needed on the contributions of these
factors to enzymatic hydrolysis resistance in the different
genome groups, both individually and interconnectedly.
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