
Vol.: (0123456789)
1 3

Environ Monit Assess (2024) 196:401 
https://doi.org/10.1007/s10661-024-12554-w

RESEARCH

Chlorophyll‑a unveiled: unlocking reservoir insights 
through remote sensing in a subtropical reservoir

Kudzai S. Mpakairi · Faith F. Muthivhi · 
Farai Dondofema · Linton F. Munyai · 
Tatenda Dalu

Received: 3 September 2023 / Accepted: 16 March 2024 / Published online: 27 March 2024 
© The Author(s) 2024

a higher accuracy of estimating chl-a when spectral 
bands alone were used. Sentinel-2 MSI’s additional 
red-edge spectral bands provided a notable advan-
tage in capturing subtle variations in chl-a concentra-
tions. Lastly, the –chl-a concentration was higher at 
the edges of the Nandoni reservoir and closer to the 
reservoir wall. The findings of this study are crucial 
for improving the management of water reservoirs, 
enabling proactive decision-making, and supporting 
sustainable water resource management practices. 
Ultimately, this research contributes to the broader 
understanding of the application of earth observation 
techniques for water resources management, provid-
ing valuable information for policymakers and water 
authorities.
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Abstract  Effective water resources management 
and monitoring are essential amid increasing chal-
lenges posed by population growth, industrialization, 
urbanization, and climate change. Earth observation 
techniques offer promising opportunities to enhance 
water resources management and support informed 
decision-making. This study utilizes Landsat-8 
OLI and Sentinel-2 MSI satellite data to estimate 
chlorophyl-a (chl-a) concentrations in the Nandoni 
reservoir, Thohoyandou, South Africa. The study 
estimated chl-a concentrations using random forest 
models with spectral bands only, spectral indices only 
(blue difference absorption (BDA), fluorescence line 
height in the violet region (FLH_violet), and normal-
ized difference chlorophyll index (NDCI)), and com-
bined spectral bands and spectral indices. The results 
showed that the models using spectral bands from 
both Landsat-8 OLI and Sentinel-2 MSI performed 
comparably. The model using Sentinel-2 MSI had 
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Introduction

Water resource management is crucial in sustain-
ing human populations, ecosystems, and economic 
activities globally (Chawla et al., 2020; Sheffield et al., 
2018). Many regions worldwide are experiencing water 
stress, and scarcity issues (Bhattacharya & Raghuvan-
shi, 2018; Leal Filho et al., 2022). Population growth, 
industrialization, urbanization, and climate change are 
reasons behind these issues and have affected  water 
availability and quality globally (Hanjra & Qureshi, 
2010; Meyer & Turner, 1992). In addition, ineffective 
water management practices, inefficient distribution 
systems, and over-extraction from rivers and aqui-
fers have also exacerbated the problem (Nagara et al., 
2015). Earth observation techniques have the potential 
to lessen these challenges by providing valuable data 
on reservoir water quality, allowing for proactive plan-
ning and management, of water resources (Matthews, 
2014; Matthews & Bernard, 2015).

Adopting earth observation technologies to moni-
tor reservoirs has brought about a pivotal advance-
ment in assessing water resources management 
(Bangira et  al., 2019; Matthews, 2014). One com-
monly used parameter to assess water quality with 
earth observation technologies is chlorophyll-a (chl-
a) concentration (Kravitz et  al., 2020; Matthews, 
2014; Matthews & Bernard, 2015). Chlorophyll-a 
(chl-a) presence is an important indicator of water 
quality and a crucial factor in understanding the 
dynamics of algal blooms (Kravitz et al., 2020). This 
dual role provides valuable insights into the eco-
logical health of reservoirs. Algal blooms are usu-
ally a result of excess nutrients in water resources 
and can thrive when chl-a levels are elevated (Liao 
et  al., 2021; Summers & Ryder, 2023). These alga 
blooms can lead to the proliferation of harmful algal 
species that produce cyanotoxins (e.g., microcystins) 
detrimental to human health and aquatic life (Mat-
thews et  al., 2010). Ingesting water contaminated 
with these toxins can lead to gastrointestinal issues 
and more severe conditions such as liver damage and 
neurological disorders (Diez-Quijada et  al., 2021; 
Flores et al., 2018). In aquatic life, these toxins can 
deplete oxygen levels in water bodies, lead to the 
death of fish, and disrupt the balance of aquatic 
ecosystems (Flores et  al., 2018). Earth observation 
techniques can effectively monitor these alga blooms 
through assessing chl-a levels and give insights on 

areas with potential algal blooms (Dzurume et  al., 
2022; Malahlela et al., 2018). By closely monitoring 
chl-a concentrations and their relationship to algal 
blooms, we can not only ensure the ecological bal-
ance of reservoirs but also safeguard the well-being 
of the aquatic life and human populations.

Medium-resolution satellite sensors such as Land-
sat-8 Operational Land Imager (OLI) and Sentinel-2 
Multispectral Instrument (MSI) have been effectively 
utilized for water resources monitoring in most envi-
ronments (Dzurume et  al., 2022; Malahlela et  al., 
2018). Both satellites have multispectral sensors that 
capture data across different spectral regions. These 
spectral regions are valuable for assessing various 
aspects of water resources, including chl-a concentra-
tions (Barraza-Moraga et al., 2022), turbidity (Magrì 
et  al., 2023), and suspended sediment loads (Zhang 
et  al., 2022a, 2022b). The temporal scale and his-
torical images available from these sensors allow for 
adaptive management strategies and timely assess-
ments of water quality (Matthews et al., 2010; Smith 
& Bernard, 2020). This allows for cost-effective water 
management practices at different spatial scale from 
the synoptic view offered by Sentinel-2 MSI and 
Landsat-8 OLI (Matthews et al., 2010).

South Africa is a water-scarce country with highly 
variable rainfall patterns. The National Water Act 
(Act 36 of 1998) provides a legal framework for 
water resource management in South Africa, includ-
ing allocating and protecting water resources. Despite 
this legislative framework, South Africa still needs 
to overcome several challenges to effectively manage 
its water resources. These challenges include but are 
not limited to (1) competing demands for water use, 
(2) limited financial resources for managing water 
resources, and (3) institutional constraints within gov-
ernment departments (Plessis, 2023; Sorensen, 2017). 
Owing to these challenges, water resources in South 
Africa are experiencing eutrophication, sedimentation, 
and deteriorating water quality (Harding, 2015; Mat-
thews & Bernard, 2015). Governments, water authori-
ties, and communities in South Africa can utilize 
remote sensing products and tools to enhance their 
understanding of reservoir water quality necessary in 
supporting evidence-based decision-making, and fos-
tering sustainable water management practices.

To effectively monitor these threats this study pro-
poses a cost-effective method using earth observa-
tion tools to provide essential insights into the water 



Environ Monit Assess (2024) 196:401	

1 3

Page 3 of 14  401

Vol.: (0123456789)

quality monitoring for the Nandoni Reservoir. The 
water quality in Nandoni Reservoir, South Africa, is 
under threat due to various anthropogenic activities, 
including partially treated sewage plant discharges, 
the introduction of harmful by-products, and inad-
equate water management practices (Gumbo et  al., 
2016; Takalani, 2022). This study assesses the use of 
using earth observation in monitoring water quality 
based on chl-a concentrations in the Nandoni Reser-
voir. This is unique to the Nandoni reservoir and can 
enhance timely water resources monitoring. Specifi-
cally, this study evaluates the utility of spectral indi-
ces only, spectral bands only, and a combination of 
spectral bands and spectral indices derived from 
Landsat-8 OLI and Sentinel-2 MSI to monitor the 
chl-a concentration in the Nandoni Reservoir. This 
research aims to contribute to understanding remote 
sensing techniques for water resources management 
and their application in South Africa’s context and 
facilitate informed decision-making processes neces-
sary for water resource management. This research 
adds to the body of knowledge on the application of 
remote sensing in monitoring and managing water 

resources in regions impacted by similar anthropo-
genic activities. The findings and methodologies pre-
sented in this study can potentially be extrapolated 
and applied to other regions facing comparable water 
quality challenges, thus broadening the applicabil-
ity and relevance of remote sensing techniques in 
addressing global water resource management issues.

Materials and methods

Study area

The study was conducted in the Nandoni Reservoir 
in the Limpopo province of South Africa (Fig.  1). 
This reservoir, constructed between 1998 and 2005, 
is an earth-filled concrete structure that relies primar-
ily on the Luvuvhu River. Covering an approximate 
catchment area of 1380 square kilometers, the reser-
voir spans a total length of 2215 m and boasts a total 
capacity of 16.4 million cubic meters (Gumbo et al., 
2016; Mbedzi et  al., 2020; Takalani, 2022). Annual 
precipitation within the catchment area typically 

Fig. 1   The location of the Nandoni Reservoir in Limpopo province, South Africa
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ranges from 610 to 800  mm, resulting in a mean 
annual runoff of 519 million cubic meters (Makher-
ana et al., 2022; Mbedzi et al., 2020). The reservoir’s 
topography features low-lying, undulating terrain, 
underlain by a gneiss sequence of the Soutpansberg 
group.

The Nandoni Reservoir is a crucial water resource, 
serving the needs of 1.3 million people in the 
Vhembe and parts of Mopani districts, Limpopo 
province (Dalu et al., 2019; Gumbo et al., 2016). The 
reservoir supplies water to several places and was 
constructed to upgrade water resource management 
and promote economic development through water-
based recreation and tourism (Sinthumule, 2021). 
Specifically, it plays a significant role in supporting 
the communities’ water requirements and presents 
recreational opportunities that can foster socioeco-
nomic development, especially for waterfront villages 
facing challenges related to poor service delivery and 
high unemployment (Gumbo et al., 2016).

Water sample collection and processing

To determine the chl-a concentration of the Nandoni 
Reservoir, a boat was used to collect water samples at 
26 randomly selected sites. These sites were distrib-
uted along the entire length of the reservoir as shown 
in Fig. 1. The water sample were collected from the 
3rd to the 5th of December 2020 under clear skies 
(between 09:00 and 13:00) so that diurnal changes in 
water quality can be controlled.

The water samples collected to determine chl-a 
concentration was done using 1L Consol glass bot-
tles. Integrated water samples (n = 2 per site) from the 
reservoir were taken below the surface, by directly 
holding the bottle into the water at a depth of 30 cm 
below the surface. Extreme care with the water sam-
ple bottles were taken to ensure that no air bubble was 
left inside. All bottles were marked with the site num-
ber after the collection, and the samples were stored 
in a cooler box on ice before being taken to the labo-
ratory for further analysis.

Chlorophyll-a measurements in the laboratory 
were done to give a proxy of the phytoplankton bio-
mass present in the water. In the laboratory, 250 mL 
of sampled water were filtered through 0.07 µm (i.e., 
diameter 47 mm) glass fiber filter (GF/F). Each filter 
paper was folded into half and wrapped in aluminum 
foil and placed them in the freezer, to protect the 

extracts from the light before chl-a extraction. Later 
on, the individual labelled filters were added in 10 mL 
of 90% acetone in 15-mL centrifuge tubes to extract 
the total chl-a over 24 h at –20 °C in the freezer as 
described in Dalu et al. (2013). After 24 h, the extract 
was centrifuged at 3000 rpm for 5 min to remove any 
materials in suspension. Chlorophyll-a concentration 
was determined by using spectrophotometry method 
which involved measuring absorbance at wavelengths 
of 665 nm and 750 nm using a SPECTROstar NANO 
(BMG Labtech GmbH, Ortenberg), before calculat-
ing chl-a concentration according to Almomani and 
Örmeci (2018).

Satellite image processing

In this study, data from two satellite sources, Senti-
nel-2 MSI and Landsat-8 OLI, covering the Nandoni 
Reservoir were used. These images were retrieved 
from Google Earth Engine (GEE) and their acquisition 
dates (3–5 December 2020) coincided with when the 
point data for chl-a was collected. The images were 
retrieved as surface reflectance from GEE platform 
and were already processed for atmospheric attenua-
tions and topographic effects (Mpakairi et al., 2022a, 
2022b). To ensure high data quality, cloud-quality 
filters and a cloud mask were also applied, eliminat-
ing potentially cloud-covered or low-quality data and 
ensuring that only high-quality and cloud-free pixels 
were used for analysis (Sharifi et al., 2022).

Spectral indices for estimating chl‑a concentration

From the retrieved satellite data, three spectral indi-
ces were calculated for each satellite sensor. These 
spectral indices were the blue difference absorption 
(BDA), fluorescence line height in the violet region 
(FLH_violet), and normalized difference chlorophyll 
index (NDCI). These indices have been widely used 
in previous studies for estimating chl-a concentra-
tions using remote sensing data hence their use in this 
study (Buma & Lee, 2020; Mishra & Mishra, 2012).

The three-band algorithms (BDA) index meas-
ures the difference in absorption between the blue 
and green regions of the electromagnetic spectrum 
(Dimapilis, 2021; Gitelson et  al., 2003; Johansen 
et al., 2018). As chl-a absorbs light in the blue region 
and reflects light in the green region, the BDA index 
allows us to estimate chl-a concentrations in water 
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bodies by quantifying this differential absorption pat-
tern (Johansen et  al., 2018). The BDA is calculated 
using Eq. 1 in Table 1.

The fluorescence line height (FLH) index is spe-
cifically designed to detect chlorophyll fluorescence, 
which is directly related to the concentration of chl-
a in the water (Zhao et al., 2010). By measuring the 
height of the fluorescence peak in the violet region of 
the spectrum, the FLH_violet index provides valuable 
information for accurate chl-a estimations(Beck et al., 
2016; Johansen et al., 2018). The FLH_violet can be 
calculated using Eq. 2 in Table 1.

The normalized difference chlorophyll index 
(NDCI) is a widely used spectral index for chl-a esti-
mation (Mishra & Mishra, 2012). It capitalizes on 
the principle that chl-a absorbs more light in the red 
region of the spectrum and reflects more in the near-
infrared region. By taking the normalized difference 
between these two bands, the NDCI index enhances 
sensitivity to chlorophyll-a content, enabling precise 
estimations of chl-a concentrations in water bodies. 
The NDCI can be calculated using Eq. 3 in Table 1.

Estimating chlorophyll‑a with random forest and 
remote sensing data

To estimate chl-a concentrations in the Nandoni 
Reservoir, the study used the random forest algo-
rithm. The random forest algorithm was purposively 
selected because it is a reliable and highly predic-
tive classifier capable of dealing with non-linear 
data (Mpakairi & Muvengwi, 2019; Mpakairi et  al., 
2022b). It has also been observed to outperform other 

classifiers such as support vector machines and Naïve 
Bayes (Gxokwe et al., 2022).

The random forest model requires model calibra-
tion based on a set of hyperparameters. These hyper-
parameters include the number of trees (n = 500), 
maximum tree depth (10), minimum samples per leaf 
(2), minimum samples per split (5), and random seed 
(50). These hyperparameters collectively influence 
model performance and robustness, necessitating 
careful calibration to optimize results (Mpakairi & 
Muvengwi, 2019; Mpakairi et al., 2022b).

The random forest models used point data col-
lected in the field as well as spectral bands and indi-
ces derived from Sentinel-2 and Landsat-8 satellite 
imagery. Specifically, six random forest models were 
used to estimate chl-a concentrations in the study area. 
The first pair of random forest models were built indi-
vidually using spectral bands from Sentinel-2 MSI and 
Landsat-8 OLI only. The second pair of the random 
forest models were also built using spectral indices 
calculated in Table  1 for Sentinel-2 MSI and Land-
sat 8-OLI. Lastly, the third pair of the random for-
est models were built using combined spectral bands 
and indices for each satellite sensor. The spectral 
bands-only models were used to assess the relation-
ship between the spectral band values and chl-a con-
centrations, whereas the combined spectral bands and 
indices model were used to assess the performance of 
the model when provided with additional information 
from the spectral indices. Lastly, the spectral indices 
alone models were used to determine if the spectral 
indices alone, specifically designed to estimate chl-a, 
could independently provide accurate predictions.

Table 1   The spectral indices that were used in estimating chl-a concentration

Equation number Spectral indices name Formulae Source

Equation 1 Three-band algorithms (BDA) index Sentinel-2 MSI
1

B4
− (

1

B5
∗ B8b)

(Buma & Lee, 2020)

Landsat-8 OLI
(Blue) − (Red)/(Green)

Equation 2 Fluorescence line height (FLH) index Sentinel-2 MSI
(band3) − [(band4) + (band2) − (band4)]

(Buma & Lee, 2020; 
Johansen et al., 
2018)Landsat-8 OLI (NIR band is far from 

chlorophyll-a peak)NIR−Red
NIR+Red

Equation 3 Normalized difference chlorophyll index 
(NDCI)

Sentinel-2 MSI Rededge−Red
Rededge+Red

(Johansen et al., 2018)

Landsat-8 OLI
NIR−Red

NIR+Red



	 Environ Monit Assess (2024) 196:401

1 3

401  Page 6 of 14

Vol:. (1234567890)

Model evaluation

To evaluate the accuracy and reliability of the 
random forest models for estimating chl-a con-
centrations, internal cross-validation was used 
considering the limited number of data points. To 
maximize data usage, we divided the chl-a meas-
urements into a predefined number of subsets or 
folds (K = 10). Each fold was alternately used as 
the test set, while the remaining folds served as 
the training set during successive model iterations. 
The final model was determined by identifying the 
model with the highest cross-validated coefficient 
of determination (R2

cv). Other validation meas-
ures there were also calculated include the root 
mean square error (RMSE) and mean absolute 
error (MAE). Internal cross-validation technique 
helps mitigate the risk of overfitting and provides 
greater confidence in the model’s ability to gener-
alize to new, unseen data despite the small dataset 
(Vabalas et  al., 2019). The insights gained from 
this evaluation are critical for validating the appli-
cability of the spectral band and indices used and 
the overall accuracy of the models.

Results

Model performance

All the models used in this study were able to esti-
mate chl-a in the Nandoni Reservoir (R2 > 0.80) 
(Table 2). The spectral bands-only model performed 
better using Sentinel-2 MSI (R2

cv = 0.89) than when 
the model used Landsat-8 OLI data (R2

cv = 0.87). 
Using Landsat-8 OLI derived data improved the per-
formance of the spectral indices model (R2

cv = 0.90) 
and spectral bands and indices model (R2

cv = 0.87). 
Although the predictive accuracy of these models 
differed, there was no significant difference (p > 0.55) 
between all the models used in this study (Fig. 2).

Distribution of chlorophyll‑a concentrations

The concentration of chl-a differed across the res-
ervoir depending on the sensor used. However, the 
concentration did not vary with the model used. 
Models using Sentinel-2 MSI showed that chl-a 
was high along  the shoreline, and along most dis-
tributaries of the reservoir (Fig.  3). Models using 

Table 2   Results for the cross-validated coefficient of determination (Rcv
2), root mean square error (RMSE), and mean absolute error 

(MAE) to evaluate model performance for all the models executed using Landsat-8 OLI or Sentinel-2 MSI data

Model Landsat-8 Sentinel-2

Rcv
2 RMSEcv MAEcv Rcv

2 RMSEcv MAEcv

Spectral bands 0.87 20.27 0.18 0.89 10.18 0.11
Spectral indices 0.90 30.01 0.19 0.82 50.09 0.29
Spectral bands and indices 0.87 22.30 0.06 0.80 23.53 0.03

Fig. 2   The mean difference 
of all models was evaluated 
using the cross-validated 
coefficient of determination 
(R2

cv). The models were run 
using either Landsat-8 OLI 
or Sentinel-2 MSI imagery
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Landsat-8 OLI showed that chl-a was mainly high 
closer to the reservoir wall. For both sensors and 
with all models, the central part of the Nandoni 
Reservoir had low chl-a concentration.

Variable contribution to estimating chl‑a 
concentration

Spectral bands model

The results showed that for the model using spectral 
bands only from Landsat-8 OLI data, the near-infra-
red, shortwave infrared, and green spectral bands 
contributed most to the overall performance of the 
model (Fig.  4). In addition, the thermal band from 
Landsat–8 OLI contributed the least to the overall 

performance of the spectral bands-only model using 
Landsat-8 OLI data. On the other hand, SWIR 2 and 
the green spectral bands contributed most to the over-
all performance of the spectral bands-only model 
using Sentinel-2 MSI data, and the red-edge spectral 
bands (red-edge three and red-edge four) contributed 
least to the same model.

Spectral indices model

The results also showed that the BDA3 spectral index 
contributed most to the spectral indices model using 
Sentinel-2 MSI data and the FLH_violet spectral 
index contributed most to the spectral indices model 
using Landsat–8 OLI (Fig.  5). The FLH_violet and 
BDA2 spectral indices contributed the least to the 

Fig. 3   Distribution of chl-a in Nandoni Reservoir using six models based on either Landsat-8 OLI or Sentinel-2 MSI derived data

Fig. 4   Variable contribu-
tion of Landsat-8 OLI or 
Sentinel-2 MSI spectral 
bands to the performance 
of the spectral bands-only 
model
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overall performance of the model using Sentinel-2 
MSI and Landsat-8 OLI data, respectively. However, 
the NDCI spectral index performed moderately when 
used with Landsat-8 OLI or Sentinel-2 MSI for the 
spectral indices model.

Spectral bands and indices model

The SWIR 2 spectral band, followed by the blues 
spectral band and the BDA3 spectral index, contrib-
uted most to the spectral bands and indices model 
using Sentinel-2 MSI data (Fig.  6). For the same 
model using Landsat-8 OLI data, the FLH-violet 
spectral index contributed the most, followed by 
the SWIR 1 and green spectral bands. The thermal 

spectral bands from Landsat-8 OLI and the FLH_vio-
let spectral index from Sentinel-2 MSI contributed 
the least to the performance of the spectral bands and 
indices model when estimating chl-a.

Discussion

Cost-efficient methods of monitoring eutrophica-
tion are essential for effective water management 
in aquatic environments, allowing for timely and 
accurate assessment of nutrient levels and the imple-
mentation of targeted mitigation strategies (Chawla 
et al., 2020; Sheffield et al., 2018). This study aimed 
to asses the water quality of Nandoni reservoir 

Fig. 5   Variable contribu-
tion of Landsat-8 OLI or 
Sentinel-2 MSI-derived 
spectral indices to the 
performance of the spectral 
indices-only model

Fig. 6   Variable contribu-
tion of Landsat-8 OLI or 
Sentinel-2 MSI derived 
spectral bands and indices 
to the performance of the 
spectral bands and indices 
model
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by comparing  chl-a concentration using Landsat-8 
OLI and Sentinel-2 MSI. The results are coherent 
with similar studies conducted in other environ-
ments and demonstrate how earth observation is 
valuable for monitoring water reservoirs in South 
Africa.

Chlorophyl ‑a (Chl‑a) variation across a spatial scale

The results showed that the concentration of chl-a 
was high at the edges of the Nandoni reservoir and 
closer to the reservoir wall when using Landsat-8 OLI 
and Sentinel-2 MSI data. The observed pattern in 
chl-a concentration can be attributed to physical and 
ecological factors influencing algal growth and nutri-
ent availability (Moreno-Ostos et al., 2009). Consist-
ent with previous studies, the accumulation of chl-
a along the ends and near the reservoir wall can be 
attributed to reduced water circulation and increased 
sedimentation in these areas (Munyai et  al., 2022). 
The restricted flow and hydrodynamic processes 
near the reservoir wall can accumulate nutrients and 
organic matter, creating favorable conditions for algal 
growth (Moreno-Ostos et  al., 2009; Munyai et  al., 
2022). The localized hydrodynamic conditions create 
stagnation zones where algal biomass can accumulate 
and persist, resulting in higher chl-a concentrations 
(Pinardi et  al., 2015). This phenomenon has been 
previously documented in studies focusing on fac-
tors influencing algal bloom distribution (e.g., Pinardi 
et al. (2015); Ahn et al. (2020); Chen et al. (2016)). 
On the other hand, the high concentration of chl-a 
near the edges could be explained by the spatial vari-
ations in light availability and penetration within the 
water column in shallow water (Depew et  al., 2006; 
Rajendran et al., 2022). The edges of water reservoirs 
are often shallower compared to the central regions of 
the water body (Depew et al., 2006; García-Rodríguez 
& Tavera, 2002). As a result, these areas receive rela-
tively higher amounts of incident light, allowing for 
greater photosynthetic activity and chl-a production 
(Rajendran et al., 2022). The increased light availabil-
ity can stimulate algal growth and contribute to the 
higher chl-a concentrations observed in these regions 
(Cloern, 1999; Fork et al., 2020). These findings con-
tribute to our understanding of the complex dynamics 
of chl-a distribution in reservoir reservoirs and have 
implications for water quality assessment and ecolog-
ical monitoring in similar environments.

Sensor selection in estimation in chl‑a concentration

The results from this study demonstrate that the 
model using spectral bands only from Sentinel-2 
MSI had a high accuracy (OA = 0.87) when com-
pared to the model using spectral bands only from 
Landsat-8 OL I (OA = 0.87). Landsat-8 OLI and 
Sentinel-2 MSI sensors have different spectral and 
spatial configurations that influence their use in esti-
mating chl-a. Landsat-8 OLI provides data in the vis-
ible, near-infrared, and shortwave infrared regions, 
while Sentinel-2 MSI covers a broader spectral range, 
including additional bands in the red edge and atmos-
pheric correction bands (Ngadze et  al., 2020). The 
additional red-edge spectral bands in Sentinel-2 MSI 
have been crucial in observing the subtle difference in 
chlorophyll in most vegetated environments (Bramich 
et  al., 2021; Zhang et  al., 2022a, 2022b). In aquatic 
environments where chl-a exits, these bands have also 
been observed to be relevant (Bramich et al., 2021). 
Findings from this study are coherent with similar 
studies that have been done in Lake Erie (Bramich 
et al., 2021) and Beijing (Shi et al., 2022), where chl-
a estimation was accurate when Sentinel-2 MSI spec-
tral bands were used. In addition to the spectral con-
figuration, the difference in spatial resolution between 
Sentinel-2 MSI and Landsat-8 OLI play a role when 
estimating chl-a since water’s absorption and scatter-
ing properties affect the chl-a concentration estima-
tion (Dzurume et al., 2022).

The results also showed that the model using spec-
tral indices, a combination of spectral indices and 
spectral bands, had a high accuracies when using 
Landsat-8 OLI data than when using Sentinel-2 MSI. 
However, the predictive accuracy of these models was 
not significantly different (p > 0.55). The difference in 
predictive performance between Sentinel-2 MSI and 
Landsat-8 OLI could be attributed to the choice of 
spectral indices utilized in the analysis. The selected 
indices, three-band algorithms (BDA), fluorescence 
line height (FLH_violet), and normalized difference 
chlorophyll index (NDCI), are known to be effective 
indicators of chl-a concentrations in various aquatic 
environments (Buma & Lee, 2020; Rajendran et  al., 
2022; Zhao et  al., 2022). In this study, these indi-
ces performed better when calculated from Land-
sat-8 OLI. These findings are similar to the results 
by Buma and Lee (2020) and Karimi et  al. (2022), 
who found out that these indices demonstrated a 
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higher mean average when utilizing Landsat 8-OLI 
or yielded comparable outcomes to those obtained 
from Sentinel-2 MSI. The performance of these indi-
ces may also be attributed to the tailored nature of the 
FLH_violet index to the spectral characteristics of 
Landsat sensors (Buma & Lee, 2020; Johansen et al., 
2018; Rajendran et al., 2022). As for the other indi-
ces (BDA and NCDI), it is plausible that they exhibit 
different sensitivities to chl-a concentration in diverse 
environments (Buma & Lee, 2020; Rajendran et  al., 
2022). Lastly, the contrasting accuracies may lie in 
the radiometric calibration of the data. Landsat’s 
rigorous calibration and validation processes, well-
established over decades of satellite missions, could 
have contributed to the robustness of its derived indi-
ces (Nazeer & Nichol, 2014; Rajendran et al., 2022; 
Smith et al., 2021). On the other hand, although Sen-
tinel-2 MSI also undergoes a rigorous calibration pro-
cess, its comparatively recent operational deployment 
may result in subtle calibration differences, impact-
ing the accuracy of the derived spectral indices (Tran 
et al., 2023).

Limitations

While this study contributes valuable insights into 
chl-a concentration estimation using remote sens-
ing, some limitations exist. The absence of multi-
temporal in  situ data for validation restricts our 
ability to comprehensively evaluate the accuracy of 
our remote sensing-based estimations. Multi-tem-
poral data allows for assessing the consistency of 
the remote sensing-derived chl-a estimations across 
varying environmental conditions and seasons (Dzu-
rume et  al., 2022). Multi-temporal images could 
also improve the results since single images can be 
affected by atmospheric conditions and variations in 
water constituents can introduce uncertainties into 
remote sensing data, potentially affecting the preci-
sion of chl-a estimations (Kravitz et al., 2020; Rajen-
dran et al., 2022). Furthermore, the research primar-
ily focuses on specific sensors and spectral indices, 
which may limit its applicability in diverse environ-
mental contexts. Future research should address these 
limitations by incorporating multitemporal in  situ 
measurements and images and explore advanced 
techniques to enhance the reliability of chl-a concen-
tration assessments. Nonetheless, the results from this 

study are relevant and have the potential of support-
ing water management efforts in South Africa.

Implication on water management in South Africa

Several studies have emphasized the importance of 
chl-a estimation in reservoirs as a critical indicator of 
water quality and ecological health (Li et  al., 2018; 
Watanabe et al., 2015). Elevated chl-a concentrations 
are often associated with eutrophication, which can 
lead to ecological and environmental issues (Li et al., 
2018; Matthews, 2014; Nguyen et  al., 2021). For 
instance, excessive algal growth and algal blooms can 
result in reduced water clarity, decreased dissolved 
oxygen levels, and alteration of the aquatic ecosys-
tem dynamics (Nguyen et  al., 2021; Pamula et  al., 
2023). Such conditions can impact fish populations, 
biodiversity, and overall water quality, necessitating 
targeted management interventions which might be 
costly (Dzurume et al., 2022; Matthews, 2014).

The comparison between Landsat-8 OLI and Sen-
tinel-2 MSI for chl-a estimation in the Nandoni Res-
ervoir provides valuable insights based on existing 
literature. Selecting suitable remote sensing data and 
sensors is crucial for accurate and reliable chl-a esti-
mation (Buma & Lee, 2020; Dzurume et  al., 2022). 
The choice of the sensor can affect the retrieval accu-
racy due to differences in spectral bands, spatial reso-
lution, and atmospheric correction algorithms (Buma 
& Lee, 2020). Findings from this study align with 
studies that have highlighted the strengths of Land-
sat-8 OLI for chl-a estimation in diverse aquatic envi-
ronments (Buma & Lee, 2020; Munyai et al., 2022). 
In addition, identifying higher chl-a concentrations 
along the ends and closer to the reservoir wall can 
inform management strategies to mitigate potential 
water quality issues. By recognizing these local-
ized areas of high chl-a concentrations using earth 
observation technologies, water resource managers 
can implement measures to improve water circula-
tion, reduce nutrient loads, and monitor and control 
algal blooms more effectively (Munyai et al., 2022). 
Lastly, the spatial distribution of chl-a concentrations 
derived from remote sensing data can also calibrate 
and validate water quality models, providing valu-
able information for future predictions and scenario 
analysis. These insights contribute to the knowledge 
of reservoir monitoring and assist in evidence-based 
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decision-making for sustainable water resource man-
agement in the Nandoni Reservoir. Further collabo-
ration between remote sensing experts and water 
resource managers is essential to translate these find-
ings into effective and sustainable management prac-
tices for the Nandoni Reservoir and similar water 
bodies in South Africa.

Conclusion

This study contributes to the broader understanding 
of using remote sensing as a tool for water quality 
assessment. The findings demonstrated that models 
using spectral bands from both Landsat-8 OLI and 
Sentinel-2 MSI performed comparably, highlight-
ing the potential of both sensors for this purpose. 
Sentinel-2 MSI’s additional red-edge spectral bands 
provided a notable advantage in capturing subtle 
variations in chlorophyll levels, making it a promis-
ing option for future studies in various aquatic envi-
ronments. These findings underscore the importance 
of carefully choosing suitable sensors based on spe-
cific environmental conditions when estimating chl-
a concentrations using remote sensing data. To fur-
ther advance this research area, future investigations 
should delve into exploring advanced data fusion, and 
machine learning techniques can help optimize chl-a 
estimation and promote more accurate water quality 
assessment using remote sensing technologies.

Insights from this study provide a foundation for 
improved water quality monitoring and manage-
ment, and future research will refine our understand-
ing and improve the reliability of satellite-based chl-a 
estimation.
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