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Abstract
1.	 Temporary wetland ecosystems are common in arid and semi-arid environments, 

and are inhabited by diverse invertebrate communities. Little is known about the 
dynamics of genetic connectivity in the geographically scattered populations of 
these wetland specialists.

2.	 The current study investigated the spatial genetic structure and dispersal history 
of a recently described calanoid copepod, Lovenula raynerae, reported from 
temporary wetlands in the Eastern Cape province of South Africa. We tested 
whether the species represents a single, well-connected population or comprises 
different regional genetic groups, some of which may be rare or endangered.

3.	 Mitochondrial COI sequences were generated for 365 specimens from 46 
temporary wetlands spread across the species' known distribution range. 
Isolation-by-distance and isolation-by-environment patterns of partitioning 
genetic variations across the landscape were evaluated. In addition, the presence 
of historical impediments to gene flow between contemporary populations 
was investigated using a combination of Monmonier's algorithm and Bayesian 
reconstruction of phylogeographical diffusion in continuous space.

4.	 The wetland populations were highly structured across the landscape and could 
be assigned to six distinct evolutionary lineages, potentially representing some 
level of cryptic speciation. Two distinct phases were identified in the dispersal 
history of these lineages. Initially, dispersal only occurred inland of a postulated 
barrier, but eventually the barrier disappeared and the species extended its range 
by spreading into regions close to the coastline. Molecular dating shows that the 
barrier represents the upper limit of the coastline during the Pliocene, and that its 
crossing was facilitated by Pliocene sea regression in southern Africa.

5.	 Our finding shows that complex demographic histories can be preserved in the 
mitochondrial DNA of temporary wetland crustaceans because of limited effective 
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1  |  INTRODUC TION

Temporary endorheic wetlands are dynamic waterbodies that dom-
inate the hydrology of arid and semi-arid regions around the world 
(Dalu & Wasserman,  2022; Vanschoenwinkel et al.,  2011a). These 
ecologically productive ecosystems are typically isolated from larger 
permanent waterbodies and from each other (Fugate, 1998; Ripley 
& Simovich, 2009; Sacerdote & King, 2009), and undergo cyclic wet 
and dry phases (Dalu et al., 2016). A diverse array of aquatic crusta-
ceans with a high degree of endemicity inhabit these distinctive eco-
systems, and have evolved to exploit temporary wetlands as feeding 
grounds or as stepping-stones for dispersal (Williams, 2006). These 
species survive dry phases through dormant propagule production, 
capable of withstanding prolonged desiccation periods that are fol-
lowed by successful hatching under favourable environmental con-
ditions (Bird et al., 2019; Keeley & Zedler, 1998; Zedler, 2003).

Studies on temporary wetland species have focussed mainly 
on taxonomy and biodiversity (Bird et al., 2019), meta-community 
processes (Vanschoenwinkel et al., 2007, 2011b) and, more recently, 
on trophic interactions (Cuthbert et al.,  2020; Dalu et al.,  2017; 
Wasserman et al.,  2018). To date, only a handful of studies have 
investigated the phylogeography of branchiopod crustaceans in 
temporary wetlands, mostly in Europe, North Africa and Australia 
(Kappas et al., 2017; Lukić et al., 2019; Pinceel et al., 2013; Reniers 
et al., 2013; Vanschoenwinkel et al., 2012). As a result, the dynamics 
of population structure, the extent of connectivity between popu-
lations, and the presence of historical impediments to gene flow are 
poorly understood (Pinceel et al., 2013).

Copepods are a diverse group of crustaceans that constitute more 
than 13,000 species (Humes,  1994). They inhabit various marine, 
brackish and freshwater environments (Boxshall & Defaye,  2008), 
and form integral food-web conduits between primary producers 
and higher trophic levels. Most copepod species occur in permanent 
waterbodies and have not developed the ability to produce prop-
agules that can withstand desiccation (Hansen,  2019), but mem-
bers of the subfamily Paradiaptominae are freshwater specialists 
that produce large quantities of desiccation-resistant propagules 
under dry environmental phases in their life cycle (Suárez-Morales 
et al., 2015). In this way, these copepods have evolved similar ad-
aptations to those of large branchiopod crustaceans (Brendonck 
et al., 2008), and it has been suggested that mechanisms which gov-
ern dispersal and demographic dynamics in both groups are likely 
to be similar (Brendonck et al., 2017; Vanschoenwinkel et al., 2008).

Lovenula raynerae Suárez-Morales, Wasserman & Dalu, 2015 is a 
recently described species of Paradiaptominae that has been exclu-
sively reported from temporary wetlands in parts of the Eastern Cape 
province on the south-east coast of South Africa (Jooste et al., 2019). 
This area is known for its exceptionally high biodiversity, as it hosts 
seven of South Africa's nine biomes (Lubke et al., 1986) and forms a 
geographical and climatic transition zone between southern Africa's 
different rainfall areas (Cloete & Lubke,  1999; Lubke et al.,  1986). 
Compared to most other freshwater copepods, L. raynerae is excep-
tionally large (4–5 mm), making it the largest freshwater copepod re-
corded to date (Suárez-Morales et al., 2015).

Like other temporary wetland specialist crustaceans, L. raynerae 
is believed to rely on strong winds, occasional floodings and vector 
species such as birds, mammals and amphibians, to passively disperse 
its desiccation-resistant propagules across the landscape (Brendonck 
& Riddoch,  1999; Figuerola & Green,  2002; Vanschoenwinkel 
et al., 2008; Vanschoenwinkel, Mergeay, et al., 2011; Vanschoenwinkel, 
Waterkeyn, et al.,  2011). However, the significance of this unique 
mode of dispersal on the species' evolutionary history, and the times-
cale at which it acts on populations, is currently unknown.

The spatial partitioning of genetic variation across a landscape 
depends not only on a species' dispersibility, but also on its repro-
ductive success and the extent of density-dependent competition 
it faces once it has arrived in a new habitat (Waters et al.,  2013). 
Hence, the order of arrivals in founder populations that colonise an 
unoccupied habitat can affect the spatial structuring of genetic di-
versity in future generations (De Meester et al., 2002). The founder 
populations readily establish themselves to reach high densities. By 
contrast, secondary dispersers may face intense competition from 
the thriving founder populations and, as a result, the competitive ex-
clusion of late dispersers can counteract the homogenising effects of 
the movement of individuals between populations, eventually creat-
ing distinct lineages (Waters, 2011; Waters et al., 2013). Evidence for 
such density-dependent sorting of genetic diversity is widespread 
and includes taxa from bacterial and yeast colonies, to the migration 
of hominids out of Africa (Emerson et al., 2000; Fraser et al., 2009; 
Hallatschek et al.,  2007; Juan et al.,  1995; Oppenheimer,  2006, 
2012; Seddon et al., 2001; Sequeira et al., 2000).

In the current study, we reconstructed the dispersal history of 
L. raynerae using samples collected from temporary wetlands through-
out its known contemporary range, and investigated its genetic 
structure by testing whether (a) the species represents a single, well-
connected population or (b) it comprises different regional genetic 

gene flow after initial colonisation events. This makes them an interesting study 
system to explore the long-term effects of climate change on arid ecosystem 
communities.

K E Y W O R D S
calanoid copepod, dispersal barrier, historical demographic change, Lovenula raynerae, sea-
level changes
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groups, some of which may be rare or endangered. The significance 
of historical sea-level changes on the species' phylogeography and the 
signature of historical events in the contemporary genetic makeup of 
this arid ecosystem species are discussed. This study serves as a base-
line investigation for more comprehensive analyses of aquatic tempo-
rary wetland fauna in southern Africa.

2  |  METHODS

2.1  |  Sample collection and extraction

Samples of L. raynerae were collected from 46 distinct temporary 
wetlands across parts of the Eastern Cape province, South Africa 
(Table  S1; Figure  S1). Samples were collected with zooplankton 
nets with a mesh size of 200 μm and a diameter of 57 cm. Individual 
specimens were immediately transferred into Eppendorf tubes 
containing 80 μl of CTAB buffer (Doyle & Doyle, 1987) and 10 μl of 
Proteinase K (Qiagen, Hilden, Germany). Individuals were identified 
following Suárez-Morales et al.  (2015), and the extraction of DNA 
commenced upon returning to the laboratory (within 3–4 days of 
collection) using the CTAB method (Doyle & Doyle, 1987).

2.2  |  DNA amplification and sequencing

A fragment of the cytochrome oxidase c subunit I gene (COI) was 
amplified in 365 individuals using universal primers LCO1490 
(5′–GGT CAA CAA ATC ATA AAG ATA TTG G–3′) and HCO2198 
(5′–TAA ACT TCA GGG TGA CCA AAA AAT CA–3′) (Folmer 
et al., 1994). Each 20-μL reaction comprised 3 μL of DNA template, 
1.5 mm of each primer (Integrated DNA Technologies), 2.5 mm 
of dNTPs (Sigma-Aldrich), 2.5 μl of 10 × PCR Buffer (Promega), 
2.2 mm of MgCl2 (Separation Scientific), 7.14 μl of double-distilled 
water, 1 μl of BSA (20 mg/ml) (New England Biolabs), and 0.16 μl 
of Super-Therm Taq polymerase (5 units/μl; Separation Scientific). 
Amplification was performed on a MultiGene™ OptiMax thermal 
cycler (Labnet International). The PCR protocol consisted of an 
initial denaturation step at 95°C for 2 min, followed by 40 cycles 
of denaturation at 95°C for 30 s, annealing at 49°C for 45 s, and 
extension at 72°C for 1 min, followed by a final extension step at 
72°C for 10 min. The amplicons were visualised on a 2% agarose 
gel containing GelRed® Nucleic Acid Stain (Biotium) to verify 
successful amplification. Sequencing of amplified fragments was 
performed using BigDye Terminator version 3.1 cycle sequencing 
kit (ThermoFisher Scientific) on an ABI 3730 DNA analyser 
(Applied Biosystems).

2.3  |  Sequence analyses

Low-quality sequences were manually removed using MEGA 
version 6 (Tamura et al., 2013), and quality-filtered DNA sequences 

were aligned using MAFFT version 7 (Katoh & Standley,  2013; 
Kuraku et al.,  2013). To investigate the partitioning of the 
genetic diversity between wetlands, an analysis of the molecular 
variance (AMOVA) (Excoffier et al., 1992) in Arlequin version 3.5b 
(Excoffier & Lischer, 2010) was performed by using the program's 
default settings, and the estimated pairwise ΦST distance matrix 
was visualised in R version 4 (www.r-proje​ct.org). The population 
size parameters 8̂s and 8̂

π
 were estimated for each wetland using 

the same software.

2.4  |  Testing for isolation-by-distance and 
isolation-by-environment

In order to test for relationships between genetic distance, 
geographical distance and environmental conditions, 10 soil 
variables for each pond were obtained from the SoilGrids database 
(Hengl et al., 2017) at a 250-m spatial resolution and a soil depth of 
0–5 cm (Table S2). The raster values of these soil variables were then 
extracted in ArcMap GIS version 10.8.1 (ESRI,  2019). In addition, 
two climatic variables, the precipitation of the wettest quarter and 
the precipitation of the driest quarter, were downloaded from the 
WorldClim database (Fick & Hijmans, 2017) at a 30 arc-second (i.e., 
1 × 1 km) resolution.

Collinearity between environmental variables was investigated 
based on the variance inflation factors (VIF) calculated in the R pack-
age olsrr version0.5 (Hebbali & Hebbali, 2017), and predictors with 
VIF > 10 were considered significantly collinear and removed from 
the analysis.

A principal components analysis (PCA) was then performed on 
the centred environmental variables using the prcomp function in R. 
The distance between two locations on the resulting PCA axes, that 
accounts for >65% of the total variation, was used to approximate 
the environmental distance that separates ponds. Nei's genetic dis-
tance (Avise, 1994; Nei, 1972, 1978) between populations was esti-
mated in adegenet version 2 (Jombart, 2008).

The effects of isolation-by-distance and isolation-by-environment 
on the evolutionary history of the species were firstly investigated 
by performing a series of Mantel tests (Mantel, 1967) in the R pack-
age ecodist version 2.09 (Goslee & Urban, 2007). Mantel tests only 
show the correlation between linear components of variations; thus, 
it is necessary to first investigate such a pattern in the data. For this 
purpose, a piecewise correlogram between genetic distance, geo-
graphical distance and environmental distance was created using the 
“pmgram” function in the same package, and the linear correlation be-
tween matrices was visually inspected. Then, the correlation between 
genetic, geographical and ecological dissimilarity matrices, as well as 
the partial correlation between genetic and environmental distance, 
once the effect of geographical distance is taken into account, was 
estimated.

Next, the pairwise matrices of genetic, geographical and PCA-
transformed environmental distances were used in a multiple matrix 
regression with randomization (MMRR) analysis (Wang, 2013), and 
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the statistical significance of the correlation between matrices was 
evaluated using 9,999 permutations.

2.5  |  Investigating the presence of 
dispersal barriers

More detailed spatial genetic structure of the populations was 
investigated using two different methods. In the first method, 
Monmonier's maximum difference algorithm (Manni et al.,  2004; 
Monmonier, 1973), implemented in adegenet, was used to identify 
barriers to gene flow between wetlands. The method places a 
barrier where the genetic differences between pairs of populations 
are highest, which are then plotted on a map. The number of 
independent runs was set to 4, and a Gabriel graph (Matula & 
Sokal, 2018) was selected for visualisation, with default settings for 
all other threshold values.

In the second method, the phylogeographical history of the spe-
cies across the Eastern Cape landscape was reconstructed using 
BEAST version 1.10 (Suchard et al., 2018). To this end, a single rep-
resentative of all the unique COI haplotypes present in each wetland 
was selected using FAbox version 1.41 (Villesen,  2007). The opti-
mal sequence substitution model was estimated using the Bayesian 
phylogenetic site model averaging package bModelTest (Bouckaert 
& Drummond, 2017) implemented in BEAST version 2 (Bouckaert 
et al., 2019), and the substitution rate matrix for the phylogenetic 
reconstruction was manually modified to reflect the rates that were 
calculated during this step.

Then, the marginal likelihood of two phylogeographical mod-
els implemented in the BEAST package, diffusion in continuous 
space (Lemey et al., 2009) and diffusion in discrete space (Lemey 
et al., 2009), were estimated using stepping-stone and path sam-
pling methods, and the best phylogeographical model was selected 
for further analyses. In the discrete model, each pond location was 
assigned a unique discrete identifier, and in the continuous model, 
the latitude and longitude for each wetland were added to the 
analysis as a bivariate trait. For the trait (location) evolution in the 
discrete model, a symmetrical substitution model with social net-
work inference was specified, and for the continuous model, the 
marginal likelihoods of the Brownian random walk, Gamma relaxed 
random walk (RRW), Lognormal RRW and the Cauchy RRW model 
were calculated. To optimise the performance of the diffusion in 
continuous space analysis when all collected samples cannot be 
associated with unique geographical coordinates, a random jitter 
with a window size equal to 0.01 (Dellicour et al., 2021) was added 
to each tip. The remaining parameters were set to their default 
values.

The marginal likelihood for each model was estimated using 200 
steps of path sampling, each with 20 million iterations. The model 
with the highest marginal likelihood was selected based on the 
Bayes Factor and was subsequently run for an additional 10 inde-
pendent Markov chain Monte Carlo (MCMC) chains, each one billion 
iterations in length and with an initial burnin of 40%.

The trace files from the 10 independent chains were combined 
using LogCombiner version 2.1.3 (Rambaut & Drummond, 2014), and 
their convergence was checked using Tracer version 1.7.1 (Rambaut 
et al., 2018). A maximum clade credibility tree using mean heights 
and a 30% burnin was constructed in TreeAnnotator (Bouckaert 
et al., 2019), and the resulting tree was visualised in Figtree version 
1.4.3 (Rambaut, 2016). The sequence of dispersal events between 
wetlands was visually summarised in SpreaD3 (Bielejec et al., 2011).

2.6  |  Calibrating the Bayesian phylogenetic tree

In order to test whether sequences in the Bayesian phylogenetic 
tree evolve in a strict clock-like manner, a least-squares (LS) 
statistical test with 1,000 bootstraps and a composite matrix of GTR 
distances between sequences (Xia, 2009) was performed in DAMBE 
version 6 (Xia,  2017). Then, a likelihood ratio test was done to 
estimate the probability of error if the null hypothesis of a constant 
evolutionary rate among different lineages is falsely rejected. Finally, 
the presence of saturation in the sequence substitutions was tested 
using the same software. The reconstructed Bayesian phylogenetic 
tree was calibrated with a consensus mutation rate for the COI gene 
in crustaceans (Winkler et al., 2008).

2.7  |  Estimation of the genetic distances between 
pairs of evolutionary lineages

In order to determine whether genetic distance among evolutionary 
lineages exceeded the threshold that may indicate the presence of 
distinct species (Bezeng & van der Bank, 2019; Dowton et al., 2014; 
Hebert et al.,  2004; Klimov et al.,  2019; Liu et al.,  2017; Rossini 
et al.,  2016; Smith et al.,  2005), mean Kimura two-parameter 
(Kimura,  1980) (K2P) distances between pairs of evolutionary 
lineages were estimated in MEGA version 6. In addition, a generalised 
mixed Yule coalescent method (Fujisawa & Barraclough,  2013) 
implemented in the web server https://speci​es.h-its.org/gmyc/ was 
used to statistically test the presence of different putative species 
across the landscape.

3  |  RESULTS

3.1  |  Sequence analysis

A total of 365 COI sequences, each 480 bp in length, were gener-
ated, and 58 distinct haplotypes were identified. The AMOVA 
analysis indicated that the major component of genetic variations 
resides between populations (93%, p < 0.00001). Ninety-four per-
cent of all pairwise ΦST values between populations were statisti-
cally significant (p < 0.05), and the mean value of ΦST between pairs 
of populations was estimated at 0.93, confirming very high levels 
of population differentiation (Figure S2). The values of 

(
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for total populations were 23.78 (SD 4.98) and 50.69 (SD 24.31), 
respectively.

3.2  |  Isolation-by-distance and 
isolation-by-environment

A piecewise Mantel correlogram showed a clear monotonic linear 
relationship between geographical distance and both genetic and 
PCA-transformed environmental distances (Figure S3); therefore, 
the Mantel tests provide adequate estimates of the correlation 
between dissimilarity matrices. Specifically, the Mantel test 
analysis shows a statistically significant correlation between 
genetic distance versus geographical distance (r = 0.40, p = 0.001), 
and genetic distance versus enviromental distance (r = 0.09, 
p = 0.03). However, when the partial effect of geographical 
distance was considered, the correlation between genetic and 
environmental distance was no longer statistically significant 
(r = −0.1, p = 0.9).

The MMRR analysis showed a similar pattern. In the model that 
did not include geographical distance as a predictor, the correlation 
between genetic and PCA-transformed environmental distances 
was marginally non-significant (R2 = 0.01, β = 1, p = 0.05) and the 
model did not adequately explain variation in the data. However, 
when the geographical distance was considered, the geographical 
distance between pairs of ponds became the most significant pre-
dictor of genetic variation (R2 = 0.21, β = 5.58, p = 0.001) and the 
model performance was considerably improved. This pattern high-
lights the major role of isolation-by-distance in the spatial genetic 
structure of the study species.

3.3  |  Presence of dispersal barriers to geneflow

Monmonier's algorithm identified a barrier to gene flow that divides 
the wetlands into those associated with the coastal belt and those 
further inland (Table S3).

The bModelTest analysis identified a model with four rate 
changes (rac = rcg; rat = rgt; rag; and rct) and a Gamma-shaped site het-
erogeneity as the optimal sequence evolution model, and this model 
was selected for the Bayesian phylogeographical reconstruction. 
Among the competing phylogeographical models, a phylogeograph-
ical model in continuous space with Cauchy RRW as the optimal 
model of trait evolution had the highest marginal likelihood in the 
log space and was selected to reconstruct the species' dispersal his-
tory (Table S4). However, this reconstruction remained unchanged 
when suboptimal models were run (not shown), pointing to the 
strong genetic signature of the dispersal history in the contempo-
rary populations.

The Bayesian phylogenetic reconstruction assigned sequences 
to six distinct evolutionary lineages (Figure  1a). Reconstruction of 
the dispersal history of L. raynerae identified a geographical barrier 
in the species' contemporary distribution whose location matched 

that inferred using the Monmonier's algorithm. Initially, dispersal 
only occurred between wetlands situated inland to the north-west 
of the barrier, until it effectively disappeared, and wetlands close to 

F I G U R E  1  Phylogenetic tree reconstructed from COI sequences 
of Lovenula raynerae recovered across the species' known 
distribution range in South Africa's Eastern Cape province (a). 
The background colours on the phylogenetic tree represent the 
node age (the red represents divergence events that occurred <1 
million years ago, yellow divergence 1–3 million years ago, light 
blue divergence 3–5.8 million years ago, and purple divergence 
>5.8 million years ago); (b) the sequence of events in the dispersal 
of L. raynerae, as visualised by SpreaD3. Branches on the map are 
coloured according to the age of their corresponding parent nodes 
in the phylogenetic tree above. The polygons show the approximate 
location of the reconstructed barrier. The purple and yellow 
branches show two major ancient dispersals extending species' 
distribution into the coastal zone. For a detailed animation of the 
dispersal events depicted in this figure, please see Video S1.

(a)

(b)
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the coastline were colonised for the first time. Following this event, 
dispersal occurred in all directions (Figure 1b; Video S1).

Population size statistics 8̂s and 8̂
π
 were higher for the popula-

tions located to the north-west of the reconstructed barrier com-
pared to those located along the coastal belt (25.8 and 51.36 versus 
23.16 and 44.68, for 8s and 8

π
, respectively). This pattern places the 

most likely source of the current populations into the geographical 
region containing the inland ponds. Likewsie, the Bayesian phylo-
geographical reconstruction placed the most likely location of the 
root of the Bayesian phylogenetic tree in areas associated with in-
land ponds (−33.0969°S, 27.1638° E) (Video S2).

The null hypothesis that sequences did not evolve in a strict 
clock-like manner was rejected at a significance level of 5%, justify-
ing the use of a uniform strict molecular clock across the Bayesian 
phylogenetic tree. No evidence for saturation in sequence substitu-
tion was observed in the dataset. Assuming a crustacean COI mu-
tation rate of 0.007 (or 0.7%) per million years per lineage (Winkler 
et al., 2008), the earliest evidence for the crossing of the barrier by a 
haplotype dates back to 6.6 million years (95% highest posterior dis-
tribution [HPD]: 4.1–9.2). Soon after this event, another haplotype 
crossed the barrier approximately 1 million years ago (95% HPD: 
0.22–1.98) (Figure 1; Video S1). The remaining haplotypes then dis-
persed into coastal areas within the past 1 million years.

3.4  |  Genetic distances between 
evolutionary lineages

Mean K2P distances between lineages exceeded the 2%–4% 
thresholds that potentially define distinct species (Bezeng & van 
der Bank,  2019; Dowton et al.,  2014; Hebert et al.,  2004; Klimov 
et al., 2019; Liu et al., 2017; Rossini et al., 2016; Smith et al., 2005). 
In most cases, K2P values ranged from 16% to 26%. The likelihood 
ratio test in GMYC species delimitation analysis also confirmed that 
the model which split populations into a minimum of six putative 
species fitted the data significantly better (LR = 11.353, p = 0.003) 
than the null model that assumes a single species.

4  |  DISCUSSION

Ephemeral wetlands, despite their small size and temporary nature, 
are important features of the landscape in arid and semi-arid 
southern Africa, as they support a wide diversity of aquatic and 
terrestrial species in what is otherwise inhospitable habitat (Goudie 
& Wells, 1995). Several invertebrate species, including the world's 
largest freshwater calanoid, L. raynerae, evolved to exploit these 
seasonal habitats (Bird et al., 2019). The present study investigated 
the spatial genetic structure and dispersal history of this recently 
discovered species in temporary wetland systems in the Eastern 
Cape province of South Africa.

The significant level of genetic differentiation between wetlands 
indicates that potential vector-mediated movement of diapausing 

propagules, and intermittent connectivity of adjacent habitats 
during extreme climatic events, was insufficient to evenly distribute 
genetic diversity among populations. The effective role of vector 
species in the long-distance dispersal of crustacean propagules has 
been discussed elsewhere (Muñoz et al., 2013). However, the evi-
dence for the significant population structure in the populations of 
L. raynerae confirms that vector-mediated gene flow may primarily 
contribute to the expansion of the species’ distribution range into 
adjacent vacant habitats, as the magnitude of this dispersal does not 
counteract other evolutionary forces that promote genetic differen-
tiation between populations.

Statistically significant isolation-by-distance partitioning of 
genetic variation across the landscape shows that effective gene 
flow between wetlands decreases significantly as the geographical 
distance separating populations increases. By contrast, when the 
partial effects of geographical distance were considered, the envi-
ronmental dissimilarity between different ponds did not explain the 
structured genetic diversity across the landscape.

The dormant propagules produced by L. raynerae are exception-
ally large (Suárez-Morales et al., 2015), and this is likely to have impli-
cations for both wind and zoochorous transport between wetlands 
that are presently not well understood. The observed pattern is 
consistent with an evolutionary scenario in which different regional 
genetic groups with limited effective gene flow coexist across the 
landscape.

In passively dispersed crustaceans, the dispersal of a small num-
ber of desiccation-resistant propagules can result in the foundation 
of new populations in suitable habitats (Frisch et al., 2021), and these 
populations then grow exponentially in size and form a large number 
of diapausing egg banks (Muñoz et al., 2013). Secondary dispersers 
are confronted by intense competition from populations established 
by the original founder individuals, which may have become locally 
adapted and developed a competitive edge over time, reducing the 
contribution of late dispersers to the genetic diversity in future gen-
erations (De Gelas & De Meester, 2005; De Meester et al., 2002; 
Gómez et al., 2000; Muñoz et al., 2008, 2013). Consequently, even 
substantial vector-mediated transport of propagules will not neces-
sarily manifest in an appreciable level of effective gene flow. Founder 
effects during periods of range expansion will thus promote the for-
mation of local “lineage patches” with long-lasting genetic signatures 
of the original founder events in the contemporary populations.

The genetic distances between these lineages were all consider-
ably greater than the 4% threshold beyond which interbreedings be-
tween crustaceans have rarely been reported (Lagrue et al., 2014), 
and all of the haplotypes within each lineage descended from a 
common ancestor to form a monophyletic group (Figure 2). The ob-
served pattern could indicate an early stage of cryptic speciation in 
L. raynerae across the Eastern Cape (Nixon & Wheeler, 1990).

The reconstruction of the dispersal history of L. raynerae in the 
Eastern Cape identified an invisible barrier to gene flow across the 
species' distribution range. This barrier divides the wetland sites 
into those near the coast versus those situated inland. The dispersal 
of the species was initially limited to inland sites until the barrier 
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eventually disappeared, and coastal areas were colonised for the 
first time during the Pliocene. This epoch is chronologically linked 
to marine regressions (Siesser & Dingle,  1981) following marine 
flooding of the Eastern Cape during the Tertiary, which created the 
Alexandria Formation that is currently found tens of kilometres in-
land in various locations (Oliver,  1971; Ruddock,  1947). Fossilised 
remains of Pliocene marine invertebrate species, including the for-
aminiferans Florilus victoriense, Ammonia ammoniformis and A. italica, 
were found in the calcified sand deposits at altitudes up to 330 m 
(King, 1972), and this information can be used to estimate the con-
temporary boundaries of ancient marine beds.

Partial reconstruction of the Pliocene coastline in the Eastern 
Cape, based on the highest altitude at which fossilised remains of 
Pliocene marine fauna were discovered (King, 1972), suggests that 
the geographical locations where the contemporary coastal belt 
wetlands are located were underwater during most of the Miocene 
and early Pliocene, and gradually emerged later in the Pliocene 
when the sea regressed (Figure 2). By contrast, sea-level high stands 
during the Tertiary never reached the area to the north-west of the 
historical dispersal barrier where today's inland wetlands are located 
(Daniel et al., 1974) (Figure 2).

We suggest that the historical barrier evident in the recon-
structed dispersal history of L. raynerae reflects the upper limit of the 
Eastern Cape coastline during the Pliocene. When the sea regressed 
later in the Pliocene, a subset of founder lineages from inland wet-
lands dispersed into habitats previously inundated by seawater. 
Then, a combination of low effective gene flow, genetic drift, po-
tential monopolisation of available resources by founder populations 
(De Meester et al.,  2002; Frisch et al.,  2021), and environmental 

filtering (Frisch et al., 2021) may have influenced the species' evolu-
tionary history to create the contemporary lineage patches.

The fact that L. raynerae diversified into multiple evolutionary lin-
eages during the Pliocene has potential taxonomic and conservation 
implications for southern African ephemeral pond fauna in general. 
The finding that ancient phylogeographical patterns can persist long 
after the processes that created them are no longer present, and 
deep divergence that suggests the existence of distinct cryptic spe-
cies, indicates that this landscape may harbour many more unique 
regional populations or species that may require protection. As 
such, the present study thus represents a starting point for further 
research into overlooked biodiversity in southern Africa that could 
include exploring morphological differences, reproductive isolation, 
and adaptation to regionally unique environmental conditions be-
tween evolutionary lineages.
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