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ABSTRACT

Food safety is a significant challenge worldwide, from plantation to cultivation,
especially for perishable products such as tomatoes. New eco-friendly strategies are
needed, and beneficial microorganisms might be a sustainable solution. This study
demonstrates bacteria activity in the tomato plant rhizosphere. Further, it investigates
the rhizobacteria’s structure, function, and diversity in soil. Rhizobacteria that promote
the growth and development of tomato plants are referred to as plant growth-promoting
bacteria (PGPR). They form a series of associations with plants and other organisms
in the soil through a mutualistic relationship where both parties benefit from living
together. It implies the antagonistic activities of the rhizobacteria to deter pathogens
from invading tomato plants through their roots. Some PGPR are regarded as biological
control agents that hinder the development of spoilage organisms and can act as an
alternative for agricultural chemicals that may be detrimental to the health of humans,
animals, and some of the beneficial microbes in the rhizosphere soil. These bacteria
also help tomato plants acquire essential nutrients like potassium (K), magnesium
(Mg), phosphorus (P), and nitrogen (N). Some rhizobacteria may offer a solution
to low tomato production and help tackle food insecurity and farming problems. In
this review, an overview of soil-inhabiting rhizobacteria focused on improving the
sustainable production of Solanum lycopersicum.

Subjects Agricultural Science, Ecology, Microbiology, Plant Science
Keywords Biocontrol, Biofertilizer, Environmental health, Food safety, Plant health, Tomato

INTRODUCTION

The health status of the microbial communities present in the soil environment depends
on the soil’s quality. The soil’s health status promotes its agricultural sustainability
(Odelade ¢ Babalola, 2019). Various studies have demonstrated the effects of
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microorganisms on tomatoes regarding their size and development, proper seed
multiplication, nutrition, disease resistance, and seedling development (De Coninck et
al., 20215 Patil ¢ Fauquet, 2021). In addition, the soil factors affecting plant growth are as
follows; dissolved oxygen concentration, nutrients, phytopathogens and parasites, water,
and weed seed pools (Patil ¢» Fauquet, 2021).

Microbiota is the community of bacteria, archaea, and fungi that inhabit a particular
environment, especially in soil. They are also referred to as a collection of microorganisms
living in or on the organism’s tissue. Plants are well known as distinct organisms that carry
microbiota (Berg et al., 2020). The plant-microbe interactions shown in Fig. 1 provide a
better knowledge of mutual relationships involved in inter-kingdom networks of feeding
on the substrate manufactured in the rhizosphere. The presence of PGPR facilitates the
development of the size and health of tomatoes.

Various interactions occur between microbial species in the rhizosphere of healthy
growing tomatoes (Jain, Chakraborty ¢ Das, 2020). The rhizospheric community is
susceptible to changes in nature. This state shows the features of the microbial populations
present and reveals the biological balance between them (Jansson & Hofmockel, 2020).
The interaction of the tomato plant with microorganisms takes place in a certain way
that permits the coexistence of favorable species. This coexistence and relationships are
regarded as the norm in nature. Some microorganisms introduced are often alive in the
new region they colonized because of their interaction with other rhizospheric populations.
Because of these interrelationships, introduced microbes are nonetheless rarely sustained
in the new environment they occupy (Odelade ¢ Babalola, 2019).

Plant roots with bacteria have a beneficial impact on the development and production
of crop plants (Fasusi, Cruz ¢» Babalola, 2021). The syndicate of bacterial species is the
PGPR that lives in the soil found around the plant’s root, influencing plant development
and is profitable health-related. They are agricultural biological resources that induce the
plant’s growth and fruitfulness. They also motivate resistance in plants, i.e., a wide range of
vegetation of fruits, vegetables, and various forest trees, to different phytopathogens (Zia
et al., 2020).

The existence of bacterial species in the rhizosphere soil has been applied as a biological
signal to calculate the soil’s quality and fertility. These bacteria are regarded as biofertilizer
that causes no harm to the edaphic profile and ecological sustainability. They are regarded
as PGPR, they are known to produce phytohormones and introduce specific functions
in sustainable agriculture. Aside from the phytohormone they produced, a lot of crucial
functions which include; fixing atmospheric nitrogen, and distributing essential food
substances are among the various functions they carry out in the rhizosphere (Fasusi, Cruz
¢ Babalola, 2021). They have improved the organic carbon content, the composition of
water, soil acidity and alkalinity, and soil porosity (Glick, 2020b).

The sole earthy ecological niche where microorganisms inhabited, and their arrangement
deviates from plant species, is known as the rhizosphere soil (Agbaji, Nwaichi ¢
Abu, 2021). The most prevalent bacterial diversity associated with the root found in
the rhizosphere soil is Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
Bacteroidetes (e.g., Rhizobia, Burkholderia, Pseudomonas), and Firmicutes (e.g., Bacillus)
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Figure 1 The potential of PGPR in the rhizosphere of tomato plant.
Full-size & DOI: 10.7717/peer;j.13405/fig-1

(Babalola, Adedayo ¢ Fadiji, 2022). This rhizospheric soil comprises a high quantitative
number of bacteria, unlike those found in bulk soil. The bacteria from the rhizosphere
soil mentioned above can yield control and be used for environmentally friendly
biotechnological applications (Santoyo et al., 2021). The bacteria assist in producing
metabolites, which serve as antimicrobials (biological control) against spoilage organisms,
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biological remediation, and natural fertilization agents, thus enhancing soil fertility, soil
health, crop production, and promoting sustainability of the agricultural environments
(Fasusi, Cruz ¢ Babalola, 2021).

Tomatoes (Solanum lycopersicum) were cultivated globally. It succeeds potatoes that
belong to the family of Solanaceae. It is widely known to be the second most commercially
famous and eatable vegetable fruit (W/odarczyk, Smoliriska ¢ Majak, 2022). It is utilized by
various crop plants to study disease resistance systems’ genetics and molecular features.
However, the tomato crop is subjected to danger worldwide due to living and non-living
factors that result in severe harvest and reduced productivity. It has been reported that
tomatoes accommodate up to 200 plant diseases, including fungi, bacteria, nematodes,
viruses, and other pervert plants at various phases of development, decreasing the harvest
rate and quality of the vegetable (Shahzad et al., 2021).

Ralstonia solanacearum, a causative agent of bacterial wilt disease, has been the focus
of most research on tomato disease (Xu ef al., 2022). Zhou et al. (2021) reported the
considerable taxonomic and functional changes between diseased and healthy tomato-
associated bacterial populations caused by R. solanacearum. The healthy tomato bacterial
community interacts more frequently and consistently than the bacterial wilted tomato
community, presumably increasing community stability against R. solanacearum incursions
(Wei et al., 2019).

This literature survey evaluates the impact of PGPR in improving the production of
tomato fruits through their association with tomato plant roots and the production of
various phytohormones. This significantly contributes to plant growth sustainability,
activates plant immunity, sustains tolerance of stressors, and aid plant maturation
for fruiting. This review examines the potential of PGPR composition to enhance the
environmental health status of tomato plants. It also investigates how the rhizosphere
soil-inhabiting rhizobacteria vary in agricultural practices and explains how the knowledge
obtained will help understand PGPR that promotes the production system.

Survey methodology

To ensure an inclusive and impartial investigation of literature and to carry out the review’s
objectives, a comprehensive investigation of published articles on the activity of plant
growth-promoting bacteria mechanism of action was employed following the method of
Mayak, Tirosh ¢ Glick (2004), Olanrewaju, Glick & Babalola (2017). It is however intended
for agriculture, food safety, and sustainability. Search results were gathered and complied
employing the online endnote library system. This helped to arranged useful article
embedded in the context. However, we appraised the titles, abstracts and the conclusion
of the literature to determine the useful ones.

THE RHIZOSPHERE

This is the soil surrounding the roots of plants and where the interactions of microbial
communities and plants take place. In rhizosphere soil, several physical, chemical, and
biological features are adhered to modulate planting processes (Sahu et al., 2019). It is also
the soil habitat of intense interaction between bacteria and plants. Their structure and
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functions are influenced by the type and texture of the soil, environmental properties,
and plants growing on the soil (Nwachukwu, Ayangbenro ¢» Babalola, 2021). The plant
root exudates and other rhizodeposits lure good bacteria into the rhizosphere. The plant
host brings on the selection pressure due to the advancement of the microbiota present in
the rhizosphere, which supports and draws in a circumstantial plant microbiome due to
alterations in the spatial relation of the root exudate (Carrién et al., 2019).

Odelade ¢» Babalola (2019) reported a high total count of bacteria in the rhizosphere
soil, unlike the total count of bacteria in bulk (control) soil with no plantation. This is
because of high nutrient availability to support the growth of bacteria by root exudates,
thereby amounting to a higher microbial population and diversity of the community in
the root region that is not the same as those found in the bulk soils. The report was in
line with the study of Kari et al. (2019), which revealed the total count of bacteria cells is
108102 CFU in 1 g of rhizosphere soils. However, the count is more than the bacterial cells
in the bulk soil because of exudates produced by the root and rhizodeposition surrounding
the roots in the rhizosphere soil. In the soil, bacterial density is in abundance because of
the high relative humidity and nutrient availability (Nwachukwu, Ayangbenro ¢ Babalola,
2021).

The composition and gathering of the plant-associated microbiota and the
physicochemical properties of the soil influence disease outcomes (Carrion et al., 2019).
However, it is unknown if the microbiota of spoilage organisms of infected tomato plants
differs from those of uninfected tomato plants. Furthermore, earlier reports only showed
the habitat of bacteria in healthy and diseased tomato crop plants, excluding fungi and
other important microbes (Kwak et al., 2018; Wei et al., 2019). Some fungi, Trichoderma
viride and Penicillium chrysogenum for example have demonstrated the inhibition activity
of the spoilage organisms and attribute the arrangement of microbial communities to the
plant root (Omomowo, Adedayo ¢ Omomowo, 2020). As a result, we need to investigate
how bacterial and fungal communities function between healthy and diseased tomatoes.

Effects of various chemical derivatives on crops

Chemical derivatives have been used for a long time for ameliorating the soil’s richness
and aid bountiful harvests in agricultural practice. Fertilizers, insecticides, fungicides, and
herbicides, among others, have been applied by farmers on farmland but this has raised
health concerns for accumulating toxic chemicals in human tissue, animals, and plants
(Ajilogba, Babalola ¢ Ahmad, 2013). Subsequently, health concerns about accumulating
toxic chemicals in human tissue, animals, and plants have arisen. It even pollutes the
environment, especially aquatic lives, thereby causing suffocation of water organisms
and other health hazards to humanity (Khalid et al., 2017b). Chemicals used on farmland
entered human circulatory systems by inhalation, oral ingestion, or through the process of
diffusion through the skin (Verla et al., 2019). Pesticides are mostly known to show long-
term persistence in food materials like fruits and vegetables (Gallo et al., 2020). In addition,
some individuals are hypersensitive or allergic to this chemical already in their system,
causing various illnesses like cardiac disease, respiratory disorder, and musculoskeletal
weakness (Khalid et al., 2017).
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Various challenges have been encountered due to the application of synthetic insecticides,
herbicides, fungicides, and other chemical derivatives (Lorsban or chlorpyrifos). They have
amounted to plant diseases creating microbial resistance genes and are therefore resistant
to these chemical derivatives (Ajilogba & Babalola, 2013).

Having experienced problems caused by the derivatives mentioned above, the entire
globe is trying to produce healthy, ecologically friendly crops without chemicals. An
alternative to lessen the application of chemicals in farming systems is to apply microbial
inoculants (Chen et al., 2019). They are called biofertilizers, biostimulants, or biopesticides
and improve the soil’s fertility. In addition, they encourage crop growth and prevent
spoilage organisms from invading the crop plants. These organisms are primarily in the
rhizosphere of healthy growing plants. Their aim is for a natural and ecological equilibrium
(Omomowo, Adedayo & Omomowo, 2020).

PGPR effect on tomato productivity and their mode of action

Regarding agricultural practices, PGPR is used for its potential to increase tomato plant
development and improve tomato plant protection from various infections and non-living
factors like salinity and drought (Numan et al., 2018). PGPR is found on the tomato
plants’ organs such as the root surface attached to or in the soil (and therefore called
rhizobacteria), or the endophyte, which is the interior parts of the plant (Jambon et al.,
2018). They produce innate procedures which promote the nutrient rate of assimilation
as a biostimulant and quality of crops (Emmanuel ¢ Babalola, 2020). PGPR has been a
potential living composition of nano-biological fertilizers that can aid plant growth and
development and avoid the development of dependent fungi (Gouda et al., 2018).

PGPR assists and encourages the development of the tomato plant through direct or
indirect mechanisms (Berger, Baldermann ¢ Ruppel, 2017). There are various ways by
which PGPR promotes tomato plant growth as observed in Table 1. This procedure can
be performed independently or in a group, especially with the rhizobacteria beneficial to
the tomato plants. The characters that result in the direct promotion are called the natural
mechanism of plant growth. Here beneficial compounds are provided to host plants
and produce nutrient assimilation from the rhizosphere. On the other hand, indirect
mechanisms are those characters that disallow the operating of one or more spoilage
organisms of a tomato plant (Ajilogba ¢ Babalola, 2013).

Soils containing microbial communities and huge organic matter require less fertilizer
than naturally managed soils (Mahal et al., 2019). The huge microbial process is a
typical example in soils frequently considered when applying organic nutrient sources.
Phytomicrobiome research explains how to show a particular plant-microbe relationship
that directly assists plant nutrition (Vishwakarma et al., 2020).

According to Salehi et al. (2019), a vegetable crop like tomatoes is a horticultural crop
that promotes its consumer’s health due to the nature of certain nutrients found in them.
Tomatoes contain nutrients and antioxidants, which include oxalic acid and ascorbic acid.
These antioxidants in tomatoes are known to neutralise toxic free radicals in the blood
circulation, reduce cholesterol levels and prevents high blood pressure (Mallick, 2021).
When a crop seedling is inoculated with an actinomycete strain of rhizobacterium, the
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Table 1 Rhizobacteria and their various effects on tomato plants.

Rhizospheric Plant Rhizobacteria Effect(s) Reference
Tomato Pseudomonas sp., They prevent cold stress that inhibits the tomato Vega-Celedon et al. (2021)
(Solanum lycopersicon) Curtobacterium sp. plantation, development, and productivity of

tomatoes, especially by the following organisms:
Pseudomonas, Curtobacterium, Janthinobacterium,
Stenotrophomonas, Serratia Brevundimonas,
Xanthomonas, Frondihabitans, Arthrobacter,
Pseudarthrobacter

Burkholderia gladioli C101 They produced heat-stable active secondary metabo-  Shantharaj et al. (2021)

lites that prevent the growth of tomato spoilage or-
ganisms Xanthomonas perforans

Bacillus species Isolates TRS-7 and TRS-8 among isolate of Bacilli Kalam, Basu ¢ Podile (2020)

were the best plant growth promoters among the
seven isolates, with potential as inoculants to im-
prove the production of tomatoes.

Azospirillum

Rhizobium sp. Rhizobial strains to support and improve the growth  Zuluaga et al. (2020)
of Solanum lycopersicum under limited supply of ni-
trogen
Pseudomonas, Bacillus, These rhizobacteria contribute to the growth of Mekonnen ¢ Kibret (2021)
Azotobacter, Enterobacter, these vegetables like tomatoes, pepper, onion
Actinomycete Streptomyces As the biofertilizer these strains can promote the Gong et al. (2020)
sp. KLBMP5084 tomato seedlings’ growth in salinity stress condition.
Proteobacteria, Bacteroide, These are tomato-associated bacterial communities Dong et al. (2019)
Actinobacteria that assist in the production of tomatoes

considerable amount of glucose, fructose, nitrate, maleate, zinc, and phosphorus are found
embedded in the harvested fruit (Gouda et al., 2018).

PGPR promotes plant growth and resistance

The production of phytohormones by PGPR has important attributes on the growth and
health status of the tomato plant (Vasseur-Coronado et al., 2021). These hormones are
important signaling molecules that control the defense mechanism and growth of tomato
plants. The auxin hormone (Indole acetic acid (IAA)) is a spectacular hormone produced in
the rhizosphere of a healthy plant (Poveda et al., 2021). Phytohormones do exist in synthetic
and non-synthetic forms and are sub-divided into five classes based on their sameness and
their effect on plants. Some hormones required to regulate the growth of plants are
known as synthetic hormones and are classed as chemically, naturally, or organically

as produced by PGPR that may be obtained through several processes (Seenivasagan &
Babalola, 2021). PGPRs produce phytohormones thereby indicating their advantages to
the tomato plants and the rhizosphere they inhabit. The basis of phytohormone for the
activity of plant growth-promotion of natural biostimulators is ascribed to improving
tomato growth (Kapadia et al., 2021). Therefore PGPR ameliorates tomato plant growth
and as well improves the production of auxins (IAA), gibberellin (GA), and salicylic acid
(SA) in plants. Below is concise information of some phytohormones which include IAA,
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cytokinin (CK), ethylene (ET), GA, and SA likewise growth regulators like nitric oxide and
polyamines produced by tomato and other plants.

Auxins

PGPR are known to produce auxin which several reports have explained how IAA can
be a signaling molecule in IAA-producing and IAA-non-producing microbial species
(Batista et al., 2021; Park et al., 2021; Uzma, Igbal & Hasnain, 2022). These reports express
various ideas on the function of TAA in PGPR and their interaction with tomato plants.
These phytohormones produced by PGPR affect tomato plants’ physiology directly most
especially in the root colonization process adopted by PGPR while the association of plant-
microbe takes place. IAA acts as an indicating molecule in PGPR, so it influences positive
outcomes in the tomato plants, from phytostimulation to immunity of the plant (Samaras
et al., 2021; Shahid et al., 2021). IAA control growth by stimulating cell elongation in stems,
carrying out cell division and differentiation, fruit development, formation of roots from
cuttings, reduction of lateral branching (apical dominance), and leaf fall (abscission) (Tan
etal., 2021).

Gibberellin

GA are phytohormones that have revealed the ability to control growth processes like
stem dormancy, elongation, flower development, flowering initiation, germination, fruit
development, and leaf and fruit senescence or aging in plants (Saidi ¢~ Hajibarat, 2021).
GA effects on plants brings are somewhat the same as auxins’, despite their mode of action
are not the same. Dwarfism in plants results as a result of low or no concentration of
gibberellin (Dong et al., 2021).

Cytokinins

CKs are other plant hormones that are known to control plant growth and development,
like apical development, cell division, root elongation, stomatal behavior, and chloroplast
synthesis (Cavallaro et al., 2022). They are produced in the root of plants from adenine
compounds. They move through the vascular tissue (xylem) to the leaves, fruits, and other
parts of the plants where growth and differentiation are required. The introduction of CKs
can improve tomato plant and fruits development and as well as the potential to improve
pathogenesis in the tomato plant (Toribio et al., 2021). CKs also perform a specific role with
auxin to reverse senescence in plants by modifying the level of proteins and synthesizing
chlorophyll in the leaves to reduce the yellowing of leaves in plants (Guo et al., 2021).

Ethylene

ET is a crucial phytohormone that promotes the ripening and rotting of tomato plant
fruits (Tao et al., 2021), and the only phytohormone that happens to be a gas. However, it
can be produced mostly in every tissue of the plant and can diffuse out of the plant. This
procedure induces the stimulation of 1-amino cyclopropane-1-carboxylic acid which is an
ethylene precursor and modifies ACC oxidase activity.
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Salicylic acid

SA is also an important phytohormone that belongs to the phenolic group. There are
tremendous physiological advantages in plants as a result of their potential to control
the growth and development of plants through the following processes; photosynthesis,
respiration, transpiration, and the transportation of ions (Ageel et al., 2021). When plants
are been exposed to biotic and abiotic stresses, SAs were activated thereby performing
various functions like modulation and regulation of numerous responses (Roeber et al.,
2021). They also can activate and produce various signaling pathways by associating with
other phytohormones like ET that perform a significant function in reducing plant stresses.

Soil microorganisms’ effect on tomato plant growth promotion

The narrow soil zone extends on all sides of developing tomato plant roots. It corresponds to
a significant area for the activity of microbes in the plant rhizosphere (De La Fuente Canto et
al., 2020). A large number of taxonomic microbes include prokaryotic organisms (viruses,
bacteria, and archaea) and eukaryotic organisms (algae, arthropods, fungi, nematodes, and
protozoa) inhabit this soil. Bacteria and fungi contain mostly prevalent units revealing
elementary ecological purposes (Maziere et al., 2021). PGPR is designated and assists plant
development as free-living bacteria inhabiting soil flourish well and competitively inhabit
the plant roots (Basu et al., 2021).

The diverse bacteria members, an essential part of the microbiota found in the soil,
manufacture and liberate various modulatory compounds from the vicinity of the plants’
root that assists its growth (Khoshru et al., 2020). The contribution of nutrient acquisition
enhancement by plants determines plants’ health by PGPRs, thereby keeping them safe from
phytopathogenic microbes and enhancing resistance to non-living factors (Backer et al.,
2018). Different genera of PGPR strains possess the potential of biological control activities,
promote resistance to foliar spoilage organisms, improve crop yields, enhance nodulation
in legumes, and promote the seedlings’ occurrence (Rozier et al., 2017; Kalam, Basu &
Podile, 2020). The bacteria are Acinetobacter, Aeromonas, Agrobacterium, Allorhizobium,
Arthrobacter, Azoarcus, Azorhizobium, Azospirillum, Azotobacter, Bacillus, Bradyrhizobium,
Burkholderia, Caulobacter, Chromobacterium, Delftia, Enterobacter, Flavobacterium,
Frankia, Gluconacetobacter, Klebsiella, Mesorhizobium, Micrococcus, Paenibacillus, Pantoea,
Pseudomonas, Rhizobium, Serratia, Streptomyces, Thiobacillus, and other reported PGPRs
(Ankati ¢ Podie, 2018; Kalam, Basu ¢ Podile, 2020).

Among beneficial microbes in the soil community, bacterial species are the most
abundant and helpful. Saravanan et al. (2020) gave the following full details of the action
of bacteria in the soil: they help stimulate plant growth after the production of the certain
phytohormone responsible for the development of plants; they return nutrients to the
plants by fixing nitrogen back to the soil; they promote soil structure; they act against
spoilage organisms which can destroy the crop plants. Therefore, PGPR is naturally more
beneficial to the soil that they colonize.

According to Basu et al. (2021), a putative PGPR strain possesses plant promoting-
growth characteristics and promotes growth once it has been inoculated into a plant.
Below are the features of PGPRs in the rhizosphere soil of a tomato as stated by
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Figure 2 Various roles and functions carried out by PGPR in the rhizosphere.
Full-size & DOI: 10.7717/peerj.13405/fig-2

Guerrieri et al. (2020): they are eco-friendly and rhizosphere-competent; they promote
plant growth and development; they exhibit a broad spectrum of actions; physical fractures
like high temperature, oxidants, radiations, desiccation, should be tolerated by the PGPRs;
there is positive interaction between them and other bacteria in the soil; they should be
capable of adhering to the plant root after being inoculated in the rhizosphere, and they
should be able to demonstrate better competitive skills over rhizobacterial communities
already existing in the rhizosphere as shown in Fig. 2.

MACROELEMENT SOLUBILIZATION IN THE RHIZOSPHERE

Macroelements, also known as macronutrients, are elements or nutrients required by
plants in large quantities. The rhizosphere contains macroelements like nitrogen, calcium,
magnesium, potassium, phosphorus, and sulfur (Kadyampakeni ¢ Chinyukwi, 2021).
PGPR assists in the solubilization of various elements required by the plant (Wenzel, 2009).
More of these organisms and their fixing of these significant elements in the rhizosphere
are explained in Table 2.
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Table 2 Macroelement solubilization and activity of rhizobacteria in tomato and other crop plant rhizosphere.

Macroelements

Tomato /Crop plants

Bacteria

Effect

Reference

Nitrogen

Potassium

Magnesium

Iron

Sodium

Phosphorus

Sulfur

Beans (Phaseolus vulgaris)
and okra (Abelmoschus es-
culentus)

Tomato (Solanum lycop-
ersicum)

Rice (Oryzae sativa)

Chickpea (Cicer ariet-
inum)

Barley (Hordeum vulgare
L)

Tomato (Solanum lycop-
ersicum)

Tomato (Solanum lycop-
ersicum), Orange (Citrus
sinensis)

Pseudomonas alcaliphila, Pseudomonas
hunanensis, Streptomyces laurenti,
Sinorhizobium sp., and Bacillus safensis

Enterobacter hormaechei (MF957335)

Alcaligenes species

Azotobacter chroococcum (AU-1), Bacil-
lus subtilis (AU-2), Pseudomonas aerug-
inosa (AU-3), and Bacillus pumilis (AU-
4)

Bacillus mojavensis S1, B. pumilus S2,
and Pseudomonas fluorescens S3

Bacillus safensis B23, Bacillus aryabhat-
tai B29, Bacillus subtilis B18, Bacillus
subtilis B25, Pseudomonas moraviensis
B6 and Bacillus simplex B19

Bacillus, Klebsiella, Pseudomonas,
Azobacter, Enterobacter, Serratia,
Variovorax, and Azospirillum

The bacteria significantly promoted the
growth of the root of beans (Phaseolus
vulgaris L) and can be used to manufac-
ture biofertilizer

These bacteria are potassium solubiliz-
ing bacteria. They are great use for plant
growth under saline condition, thereby
contributing to the growth of the tomato
plant and root elongation as a result of
potassium fixation.

This bacteria displayed attributes at a dif-
ferent level of magnesium salt concentra-
tion which favors rice growth.

These rhizobacteria showed plant
growth-promoting characters and
iron chelating siderophores, allowing
promotion of the development and
production of chickpea plants under
normal conditions.

Sodium concentrations promoted leaf
water ability, and the strain S1 kept it in
line to attribute ideas

The rhizobacteria solubilized phosphate
and further improve tomato plant
growth

The rhizobacteria play an essential duty
in sulfur cycling, thereby increasing the
production of tomatoes.

AlAl, Khalifa & Al-Malki (2021)

Ranawat, Mishra & Singh (2021)

Fatima et al. (2020)

Pandey, Gupta & Ramawat (2019)

Mahmoud et al. (2020)

Cochard et al. (2022)

Rai et al. (2020)
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Biofertilizers are substances that contain living microorganisms that, when applied
to plant surfaces, or soil, populate the rhizosphere or the interior of the plant thereby
promoting growth by increasing the supply or availability of primary nutrients to the host
plant. They are also regarded as substances that contain microbes that help in the plant
nutrient acquisition process through increasing surface areas like plant roots, hydrogen
cyanide production, siderophore production, nitrogen fixation, and P-solubilization (Singh
et al., 2019b). Therefore, improving soil microbial activity can make tomato crops available
with their nutritional values (Ye et al., 2020). Although through this procedure, PGPR has
many advantages for plants and helps in the accumulation of both minor elements (Zn,
Co, Mn, efc.) and significant elements (Na, K, Mg, N, etc.) (Ramakrishna, Yadav ¢ Li,
2019). Significant elements like Mg and K are the most important elements that increase
the standard of plants (Ceccanti et al., 2021).

Potassium-solubilizing bacteria (KSB) are bacteria that can increase nutrient availability
in the soil by producing K from non-soluble materials (Numan et al., 2018). Bacteria in
organic forms release the chemical compounds tartaric acids, citric acid, gluconic acid,
succinic acid, oxalic acid, malic acid, and 2-ketogluconic acid. They can dissolve rocky K
ions or chelate compounds, releasing K into the surrounding soil for the plants to assimilate
(Mason-D’croz et al., 2019). Inoculating tomato crops with KSB, improves the presence of
K in the tomato plant’s rhizosphere, thereby producing an abundant crop harvest (Raji ¢
Thangavelu, 2021).

One of the natural processes required for plant growth includes phosphate solubilization.
Secondary metabolites like alkaloids, terpenes, phenolics, lipids, and saponins present in
phosphate solubilizing bacteria (PSB), assist in promoting the taste and encouraging health
characteristics of food crops (Ramakrishna, Yadav ¢ Li, 2019).

Solubilisation of phosphorus

For a healthy plant to grow and develop, phosphorus is one of the main elements required.
The element is readily available and found in the soil. Since this element is present primarily
in an insoluble form, rhizobacteria in the soil help solubilize the phosphorus, making it
usable by plants by accumulation and transformation of phosphate to plant roots. The
following symptoms are present in phosphorus-deficient plants: purple coloration of the
underside of the older leaves due to accumulation of anthocyanin pigment (Pongrac et al.,
2020).

The tomato plant absorbs phosphate quickly due to the high absorption surface area
gradient of the plant’s root. Rhizobacteria are known to solubilize insoluble phosphate,
which is why they are culturable on growth media in the laboratory by showing the area of
phosphate solubilization (Santoro et al., 2021). These media contain various constituents
like aluminum, iron, tricalcium phosphate, rock phosphate, and hydroxylapatite.

The following bacteria can solubilize phosphorus in the soil: Burkholderia, Azobacter,
Pseudomonas, Bacilli, Enterobacter, Citrobacter, Pantoea, among others (Kaur et al., 2017).
During the solubilization of insoluble organic phosphorus, two enzymes are involved in
the process: phytase and phosphatase. Bacteria produce organic compounds like gluconate,
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citrate, ketogluconate, tartrate, lactate, oxalate, which help solubilize inorganic phosphate
(Babalola et al., 2021).

Nitrogen fixation

Nitrogen fixation can be defined as the process by which nitrogen present in the atmosphere
is converted to ammonia by nitrogen-fixing bacteria for plants to utilize (Yilihamu et
al., 2020). Nitrogen is among the essential ingredients needed by the tomato plant. It
increases leaves’ size and quality. Its deficiency in plants results in limited growth of plants
and yellowing of plant leaves (chlorosis) (Caradonia et al., 2019). Certain microbes add
nitrogen to biofertilizers and have become a significant concern for researchers due to their
environmentally friendly nature. Certain bacterial strains help fix atmospheric nitrogen
and ensure its availability for tomato plant utilization (Masood, Zhao & Shen, 2020).
Some examples are Enterobacter, Bacillus, Azobacter, Klebsiella, Serratia, Azospirillum,
Arthrobacter, Gluconacetobacter, and Pseudomonas. This microorganism forms a symbiotic
relationship with plants by adding the atmospheric nitrogen, and the plant, in return,
houses them in their rhizospheric soil (Rozier et al., 2017). Cyanobacteria and Azolla can
also implement required nitrogen by plants, as reported by (Akhtar et al., 2021).

Potassium solubilization

Potassium is one of the macro components needed by plants. Chemically, it can be used to
produce NPK fertilizer. However, tomato plants absorb potassium as an ion that can readily
be leached and lost through soil runoff (Sardans ¢ Periuelas, 2021). This element is required
in plants to promote the formation of sugar for protein synthesis, root growth, and cell
division in plants. A significant deficiency experienced on plants lacking potassium is leaf
edge chlorosis. The economic importance of the defect is that the chlorosis is irreversible
even if one adds the potassium later.

Magnesium solubilisation

Magnesium is the primary element required for the structural component of chlorophyll. A
tomato plant needs it to promote the function of plant enzymes to produce carbohydrates,
fat, and nutrient absorption regulation (Kwon et al., 2019). Magnesium deficiency in plants
leads to chlorosis in tomato leaves, and severe cases result in stunted growth (Bang et
al., 2021). The PGPR was reported to produce several metabolites including siderophores,
organic acids, and growth hormones, which promote solubilization of iron and magnesium
to the plant (Asad ef al., 2019).

VARIOUS ASSOCIATIONS OCCURRING BETWEEN
MICROORGANISMS AND TOMATO PLANTS

Microbes form an interrelationship with tomato plants in their habitat, and such
relationships are very promising. These interrelationships create the protection of the
tomato plants against spoilage organisms and manufacture materials needed for the plants
while others are harmful to the plant (Bordewijk ¢» Schifferstein, 2020). Microorganisms’
value to the soil through interactions in the rhizosphere are materialistic in promoting and
increasing tomato production in the agricultural sector (Verma et al., 2018).
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Igiehon & Babalola (2017) explained more about Soybean (Glycine max) plantation. It
is a leguminous plant which is member of the order Fabales and family Leguminosae. It can
produce a mutualistic relationship with rhizospheric microorganisms. This literature has
proclaimed that these mutualistic microorganisms support their hosts in the habitat they
colonized.

Knowing more about relationships among microorganisms in the rhizosphere soil
is a quick procedure for farming processes that do not use chemical fertilisers that are
detrimental to plants and animals consuming them. Below are some of the associations
that take place among organisms:

Parasitic association

Parasites live and feed on other organisms called the host, and this host suffers due to
the organism feeding on it. Fungal parasites explain the parasitic relationship between
Stachybotrys elegans and R. solani, which shows the concentrations of different secondary
metabolites (Latz et al., 2018; Carroll et al., 2021). Meloidogyne spp. is a parasitic nematode
of tomato plants, most economically and globally significant. It is challenging to eradicate
and control the parasites Meloidogyne spp., because of the parasite infection on the tomato
plant. Chemical nematicides contribute to the high toxicity of the plant. Rhizobacteria
have been a prominent alternative to control these parasites without negative impact on
the tomato plant, animals, and other organisms feeding on it. Bacillus spp. was effective
and acted as biocontrol agents for plant pests and diseases (Chen et al., 2020) because

it has many functions, including fixing phosphate, increasing the plant’s growth, and
much more (Franco-Sierra et al., 2020). According to Habazar et al. (2021), Bacillus spp.
is a rhizobacterium employed to control Meloidogyne spp., to improve the growth and
cultivation of tomatoes. Bacterial species Pasteuria penetrans also act on nematodes to
decrease root-knots growth through a parasitic interrelation. This bacterium multiplies in
infected nematodes, killing them or causing infertility among those that survive the action.
Once giant spores produced by bacteria are attached to the growing nematodes present in
the rhizosphere, the movement and penetration of these nematodes are reduced (Heinrichs
& Muniappan, 2018). In particular, plants have promoted their defense mechanism to
fight invading spoilage organisms (Kohl, Kolnaar & Ravensberg, 2019). Some plant genes
are RNA-seq responsible for defense against a plant root spoilage organism, Verticillium
dahlia (Berne et al., 2020). They produced a plant-based signal transduction pathway web,
which was initiated to acknowledge elicitors with safety indication materials and Pathogen-
Associated Molecular Patterns that observe microbes like those that essentially relate to the
roots of the plant in their soil habitat. The association of microorganisms obtained in the
greenhouse field can reveal their potential thereby encouraging the isolation of beneficial
soil microbes that will possess parasitic and biological control characteristics on plant
spoilage organisms (Mills, Ross ¢» Hill, 2017).

Symbiotic association
Igiehon & Babalola (2018) reported that symbiosis is a mutual relationship or association
that involves two or more organisms to benefit both. A typical example of this association
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is the nitrogen-fixing bacteria (rhizobacteria) and roots of tomato plants (Masood, Zhao ¢
Shen, 2020), as observed in Fig. 2. Rhizobacteria manufactured certain materials to increase
the development of their host plants. They also assist in fixing nitrogen to plants and obtain
a mutualistic relationship while also yielding to living and nonliving factors (Devi et al.,
2020). Compounds like 2, 3-butanediol, among others (volatile organic chemical), are
released by some rhizobacteria that elicit induced systemic resistance (ISR) in the plant.
These compounds diffuse diketopiperazines rhizosphere interrelated bacilli, producing
lipopeptides, polyketides, biosurfactants, and siderophores with prominent signal factors
that are involved in molecular cross-talks between members of plant microbiota (Andric et
al., 2021).

The compounds like butanediol are released by symbiont B. subtilis, which is known
to inspire induced systemic resistance by tempering the transcription of Na T conveyer in
plants (Oleriska et al., 2020). Likewise, rhizobacteria are known to produce some materials
that promote tomato root penetration during growth by reducing the penetration of
the primary root and promoting the formation of the distal root (Khanna et al., 2019).
Some bacteria, together with fungi, liberate auxin hormone that comes in contact with the
signs of this material in the root region (Singh et al., 2019a). Yet, in the root endophyte,
auxin derivatives released by Piriformo sporaindica do not showcase action in the root
development of a barley plant but are primarily available for parasitic infection occurring
at the root of the plant. These bacteria and fungi found at the root also initiate compounds
(dimethyl disulfide and pyocyanin) that control the growth of plant roots by creating the
procedure of signalling auxin (Khatoon et al., 2020).

The mutualistic relationship often occurs in the rhizosphere between particular plants
and microbes. These mutual relationships also occur between the microorganisms
inhabiting the soil environment. Igichon ¢ Babalola (2017) reported the association of
beneficial bacteria and arbuscular mycorrhizal (AMF) as a mutual relationship because
the bacteria assist the fungi in a profound reciprocal relationship. At the same time,
AMF improves bacterial intrusion ability and differences, though other advantages can
be achieved in this relationship. Interactions do occur between fungi (Rhizopus) and
bacteria (Burkholderia) which was regarded as a symbiotic association in the rhizosphere
of tomatoes (Zhang et al., 2021). In the absence of the bacteria, the fungi will not produce
spores, which reveals that both organisms depend on each other for reproduction and
survival, i.e., the fungi live on the compound produced by the bacteria (Del Barrio-Duque
et al., 2020).

Antagonistic association

This association is another form of interrelation between two or more organisms, either
identical or different species. One organism dominates the other and prevents it from
carrying out characteristics of life, including growth and feeding. In the tomato rhizosphere,
antagonists produced specific chemicals which harmed other organisms. They produced
enzymes such as lipases, protease, cellulases, and chitinases. These enzymes are the
organic catalyst that can destroy or break down the cell walls of fungal spoilage organisms
(Karthika, Varghese ¢ Jisha, 2020). The rhizobacteria actions biologically controlled the
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spoilage organisms, which produced these materials to inhibit their features in the tomato
rhizosphere soil (Guerrieri et al., 2020). Some microbes show important features inhibiting
soft rot infection caused by fungi Rhizoctonia solani as observed in Table 3. These microbes
include Proteobacteria, Firmicutes, and Actinobacteria (Piechulla, Lemfack ¢ Kai, 2017).
The fact obtained later explained how particular interrelations are essential to disease
suppression. Inhibitory activity of bacteria to destroy R. solani on lettuce showed that
bacteria possessed limited effect on rhizobacteria and endophytic fungi (Glick, 2020a).
Zheng et al. (2018) gave another instance on the use of biological control bacteria on
lettuce that inhibits the action of R. solani by fungal and bacterial species found on lettuce.
This biocontrol mechanism of action explained the unexpected outcomes which were being
explained due to the unfavorable effect on AMF. However, beneficial bacteria like some
fluorescent Pseudomonas produce 2,4-diacetylphloroglucinol, an antifungal compound
that was not injurious to AMF Glomus mosseae instead easily promoted inhabitation of
root by mutualistic fungus species (Kabdwal et al., 2019). The fungal species may support
the production of mycorrhizal apart from bacteria when they live on other fungal species.
This shows that some fungi live on other species of fungi. Therefore, it is necessary to
produce abstraction of fungus (mycorrhizal) for helping bacteria. This was because some
species of fungi aider act against fungi that are not helpful and was noticed to promote
mycorrhizal production (Giovannini et al., 2020).

Therefore, the quality of antifungals can be a reason for an antagonistic selection as
biological control agents in the future. Rhizobium and Bacillus, among other rhizobacteria,
are known to liberate siderophores which inhibit spoilage organisms from acquiring iron
from the neighboring surroundings and thereby affecting spoilage organisms’ existence
(Lurthy et al., 2020). This culminates in promoting plant growth and productivity.

Waghunde et al. (2021) reported that B. amyloliquefaciens, M. oleovorans, A. xylanus,
and S. inulinus have shown high growth inhibition against fungi pathogens. Tiwari et al.
(2021) explained how Bacillus subtilis was used to prevent the development of Aspergillus
flavus and the poisonous aflatoxin the fungi produced on the farmland and while in storage.
According to Alori ¢ Babalola (2018a), various microorganisms, including Pseudomonads,
Mitsuaria sp, and Rhizobia, produces biological control mechanism against spoilage
organisms, with the latter suppressing Pythium disease, the former inhibiting Fusarium wilt
and the mid-on bacteria reducing leaf spot of disease plant and more shown in Table 3.

BACTERIA AND FUNGI AS BIOLOGICAL CONTROL
AGENTS

Biopesticides were defined as a group of microbes that show antibacterial and antifungal
procedures (Rani et al., 2017). In biological control technology used in the agricultural
process, microorganic bioinoculants play special features. The potential action of biocontrol
agents worked out by most bioinoculants could be characterized by the production of
extracellular hydrolytic enzymes and secondary metabolites that can eradicate tomato plant
pathogens at a minimum inhibitory concentration, and competition for nutrients (Lau et
al., 2020), while others influence defense approach like systemic acquired resistance in the
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Table 3 Rhizobacteria as biocontrol agents in tomato and other crop plant rhizosphere.

Biocontrol agents

Rhizosphere organisms

Effect on plants

Reference

Rhizoacteria

Proteobacteria, Actinobacteria,
Firmicutes, Acidobacteria,
Gemmatimonadetes,

Pseudomonas species

Bacillus subtilis K4-4 and GH3-38,
Stenotrophomonas, Sphingobacterium genus

Pseudomonas species and Serratia species

Streptomyces werraensis F3

Alcaligenes faecalis and Acinetobacter sp.

Streptomyces species

Bacillus safensis
RF69, Bacillus species
RP103 and Bacillus
species RP242

Biological control of tobacco bacterial
wilt (Ralstonia solanacearum)

Biological control of Fusarium oxyspo-
rum f. sp. cepae (FOC) obtained from
onion (Allium cepa) rhizosphere

Neocosmospora (Fusarium) solani is a
fungi disease affecting orange (Citrus
sinensis) biologically controlled fruit
controlled by the cited bacteria

The organism reduced egg hatching and
promoted mortality rate in vitro

The PGPR was isolated from the rhizo-
sphere of ginseng and was analyzed for
antifungal properties against ginseng
root rot

Clavibacter michiganensis caused
tomato bacteria canker to be controlled
biologically by the rhizosphere

organisms

PGPR can biocontrol pathogenic fungi,
Fusarium oxysporum causing root rot

Biological control activities have proven
to be effective in controlling maize
plant spoilage organisms (Fusarium ver-
ticillioides)

Hu et al. (2021)

Bektas & Kusek (2021)

Ezrari et al. (2021)

Abd El-Aal et al. (2021)

Qietal (2021)

Oloyede et al. (2021)

Sari, Nawangsih & Wahyudi (2021)

Einloft et al. (2021)

host plants species. The damage from the spoilage organisms to the plants can be reduced

by organisms that can arrange the steps of hormones in plant-like gibberellin, cytokine,

ethylene, and auxin (Alori ¢ Babalola, 2018b). Bioinoculants shown in Fig. 3 produce

beneficial effects on plant crop to control bacterial and fungal diseases. The biological

control potential of some bioinoculants can be fully explained in herbicidal activity, which

is primarily found in mycoherbicide of velvetleaf (Colletotrichum coccodes), Striga, and

biofungicide of Fusarium spp. Trichoderma harzianum is a fungus producing volatile

antibiotics that suppress spoilage on orange fruits (Omomowo, Adedayo & Omomowo,

2020).

According to Omomowo, Adedayo & Omomowo (2020), Trichoderma viride and

Penicillium chrysogenum are biocontrol agents that inhibited the pathogens of orange fruits

Aspergillus niger, Aspergillus fumigatus, Fusarium oxysporum, Penicillium digitatum and A.

wentii in dual culture analysis. Waghunde et al. (2021) reported that B. amyloliquefaciens,

M. oleovorans, A. xylanus, and S. inulinus have shown high growth inhibition against fungi

pathogens.
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Liberation of enzymes

Figure 3 Diagrammatic summary of some microbial inoculants in agriculture.
Full-size Gal DOI: 10.7717/peerj.13405/fig-3

CONCLUSION AND PROSPECT

Nutrient uptake occurs through the particular organ of the plant called the root, which
is substantial in the plant’s interrelation with PGPR. This review showed the action of
PGPR and their relevant functions in the tomato plant. They are known for improving
plant growth, fixing nitrate, phosphate, and other essential elements in the soil, bearing
against an invasion of spoilage organisms and producing compounds like phytohormones,
ammonia and other compounds to induce resistance against pathogens, promote growth
and improve health status of tomato plant. They improve crop yield as a result of their
biological control activity, thereby reducing the application chemical pesticide that is
harmful to human and animal health, and polluting the environment. Rhizobacteria
promote the tomato plant’s health by improving plant growth resulting in a bountiful
harvest and crop quality. However, it is recommended that more research should be done
on rhizobacteria and their interrelation with other crop plants and microbiota members
to see how they can improve those crop productions. More research should also be carried
out on microbes present in the rhizosphere, their relationship with one another, and the
plants at their root region to find out how to modify them to be more effective in tomato
production.

Abbreviations/Search words

AMF Arbuscular mycorrhizal
Biocontrol Biological control

Co Cobalt

ISR Induced systemic resistance
K Potassium
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KSB Potassium-solubilizing bacteria
Mn Manganese
Mg Magnesium
N Nitrogen
P Phosphorus
PSB Phosphate solubilizing bacteria
PGPR Plant growth-promoting bacteria
Zn Zinc
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